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ABSTRACT

Stochastic programming is employed regularly to solve energy planning problems with

uncertainties in costs, demands and other parameters. We formulated a stochastic program to

quantify the impact of uncertain fuel costs in an aggregated U.S. bulk energy transportation

network model. A rolling two-stage approach with discrete scenarios is implemented to mimic

the decision process as realizations of the uncertain elements become known and forecasts of

their values in future periods are updated. Compared to the expected value solution from the

deterministic model, the recourse solution found from the stochastic model has higher total

cost, lower natural gas consumption and less subregional power trade but a fuel mix that

is closer to what actually occurred. The worth of solving the stochastic program lies in its

capacity of better simulating the actual energy flows.

Strategies including decomposition, aggregation and scenario reduction are adopted for

reducing computational burden of the large-scale program due to a huge number of scenarios.

We devised two heuristic algorithms, aiming to improve the scenario reduction algorithms,

which select a subset of scenarios from the original set in order to reduce the problem size.

The accelerated forward selection (AFS) algorithm is a heuristic based on the existing forward

selection (FS) method. AFS’s selection of scenarios is very close to FS’s selection, while AFS

greatly outperforms FS in efficiency. We also proposed the TCFS method of forward selection

within clusters of transferred scenarios. TCFS clusters scenarios into groups according to their

distinct impact on the key first-stage decisions before selecting a representative scenario from

each group. In contrast to the problem independent selection process of FS, by making use

of the problem information, TCFS achieves excellent accuracy and at the same time greatly

mitigates the huge computation burden.
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CHAPTER 1 INTRODUCTION

1.1 Motivation

The modern lifestyle depends tremendously on the use and existence of fossil fuels, which

are energy sources such as coal, oil and natural gas. Of the energy we use, 85% comes from

fossil fuels. With this rate the world virtually depends on the supply of fossil fuel. But the

common issue presented to us is that fossil fuels are running out. Owing to the increasing

demand and limited availability of fossil fuels, the importance of efficient use of energy has

been realized all over the world. Improving energy efficiency is a key strategy in making the

world’s energy system more economically and environmentally sustainable. The importance of

energy efficiency lies in the fact that it ensures provision of same level of energy using smaller

amounts of fossil fuels. Furthermore, reduced use of fossil fuels is essential in lowering the

emission of greenhouse gases contributing to global warming.

Electrical power plants together with the production and transmission of fuels compose

a complex large-scale network that involves many uncertain factors. Despite the inherent

nonlinearities and uncertainties, remarkable efforts have been made to achieve a concise and

comprehensive understanding of the large electric power network and to find more economic

and reliable ways to organize and operate it. Due to the data availability and the complex

interaction between subsystems, most energy models found in the literature have either a nar-

row geographic focus or a perspective limited to a single aspect of the whole system. Systems

for the supply and transport of fuels and electric power therefore are investigated separately

despite being highly interconnected. However, since 1974, the U.S. Department of Energy’s

Energy Information Administration (EIA) and its predecessor, the Federal Energy Adminis-

tration (FEA), have developed a series of three computer-based, midterm energy modeling
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systems to analyze domestic energy-economy markets and the relationships among electric

energy and all kinds of fuels.

EIA constructed huge energy models with sufficient data. However, from only publicly

available sources, such as the websites of the EIA and the Canadian National Energy Board,

Quelhas et al. [55] were able to formulate, validate and analyze a parsimonious and compu-

tationally efficient decision model to account for the medium term interdependencies across

time and space in the U.S. bulk energy transportation system. This is a generalized mini-

mum cost network flow model which is constituted by supply and storage of coal and natural

gas (which together have accounted for approximately 70% of electricity generation in recent

years [25]), electricity generation and the energy flows among these subsystems. The model

can aid understanding of the tradeoffs between fuel transportation and electricity transmission

as well as the ways in which fuel storage, fuel substitution and interregional electricity trade

can be combined to meet the temporally and spatially variable demand for electricity, which

cannot be stored in significant amounts. In a case study of the year 2002, the results indi-

cated that the total cost of the fossil-fueled portion of the electricity system could be reduced

considerably by relying far more heavily on generation from coal and increasing interregional

trade [54]. However, the reliability of its conclusions could be limited by the lack of spatial and

temporal detail necessitated by limitations in data availability. In addition, the deterministic

model included an implicit assumption that all data for the year were known in advance. For

fuel prices in particular, this assumption was inappropriate: the average price of natural gas

was approximately 50% higher at the end of the year than its value predicted by EIA at the

beiginning of the year.

While the model offers related decision makers a comprehensive analysis of the national

energy system, its formulation assumes that all information is known with certainty in ad-

vance. A question is raised by researchers: can we use this model to understand the effect of

uncertainty on energy movements?

The reason to propose this question is quite natural given the uncertainty involved in the

energy system. Multiple factors such as severe weather, equipment failures and international
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political events affect fuel prices, electric supply/demand and energy transportation. Some of

the uncertain elements may cause a high cost to satisfy energy demands and some even lead to

serious consequences; for example, large-scale disruption of energy supply. In 2005, hurricanes

Katrina and Rita hit the Gulf of Mexico area. The catastrophic events not only interrupted the

local electric and coal supplies but also damaged the natural gas production and transportation

facilities, which caused significant nationwide impacts. The huge potential effects caused by

the great uncertainty associated with the energy system motivate us to include uncertainty in

the forecast elements within the model and study their effects using stochastic programming.

Stochastic programming has been applied to numerous energy models to address the prob-

lem of uncertain prices and demand. However, most of the research in the literature is limited

to regional models or a single energy resource because of the spatial complexity and the in-

terdependencies among various resources. Therefore, it would be interesting and meaningful

to apply stochastic programming to the bulk energy transportation model and generate solu-

tions to provide practical guidance for the U.S. power generation and transmission systems. A

common issue in stochastic programming models is that they usually have a great number of

scenarios which leads to large-scale optimization problems that can not be solved without tech-

niques such as decomposition, sampling and scenario reduction. There is no doubt that we will

encounter computational problems given the scale of this stochastic programming model. The

complexity inspires our further investigation into computation relieving methods which either

decompose the original problem into smaller sized problems and solve for the exact solution,

or reduce the number of scenarios considered and aim at a good approximation. Although

motivated by a specific application, these methodologies are suitable to a broader range of

problems.

Finally, there is likely to be more uncertainty about supplies and greater environmental

risk as less easily accessible reserves of fossil fuels are exploited. With levels of these fuels

constantly decreasing, we should act now to become less dependent on fossil fuels and more

dependent on renewable energy sources. Renewable energy is any natural source that can

replenish itself naturally over a short amount of time. Renewable energy comes from many
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commonly known sources such as solar power and wind. A sustainable energy supply, both in

the short- and the long-term, is needed for promoting both economic development and people’s

quality of life, as well as protecting the environment. The concepts of renewable energy and

energy efficiency go hand in hand. To make the most of the sustainable energy policy there

needs to be simultaneous application of strategies regarding renewable energy and efficient

use of energy. These problems are generally large-scale problems with a lot of spacial and

tempral complexities, which are similar to those incurred in the fossil fuel model. A example

problem is making wind power storage decisions under random wind speed/direction. Hence,

the stochastic programming methodology is appropriate for decision making with renewable

energy by modeling the uncertain elements as discrete scenarios. And the lessons we learned

from the fossil fuel model are also illuminating for generating and supplying renewable energy

with high efficiency.

1.2 Objective

The goal of this dissertation is to first examine how the inclusion of uncertainty affects the

model’s results; in particular, in historical case studies, whether this inclusion improves the

model’s accuracy in simulation; and secondly, to develop a well validated heuristic scenario

reduction algorithm that enhances computational efficiency for general large-scale stochastic

programming models.

The energy system is fraught with uncertainty. The first question we need to answer

is which factors to be modeled as stochastic elements and how to measure the uncertainty

mathematically. We focus our study on uncertainty in fuel prices. Unlike natural disasters,

they can be forecast with the aid of econometric models, but are less predictable than outages of

generating units due to nonstationary influences. The difficulty of price forecasting is expected

to increase as fossil fuels grow more scarce and regulations aimed at reducing carbon emissions

are enacted more widely.

After the stochastic model is constructed, we should collect necessary data and draw solu-

tions from the model with available methodologies that are used to address stochastic program-
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ming models. Since the solution in a historical case study is a simulation of energy movements,

it will be compared to the actual flows for validation. Also, comparison between the stochastic

technique and a deterministic approach weighs whether the additional computation cost for

stochastic programming is worthwhile or not.

In order to find a solution to the large-scale optimization problem, we need to adopt well

established methods such as decomposition and scenario reduction to reduce the problem size

and the computation load. These methods are general and well accepted yet with restrictions

such as the still heavy calculation burden and uncertain precision of the approximation. After

applying and comparing the existing methods, it is worthwhile to study and develop algo-

rithms that work particularly well in large-scale models with certain features possessed by our

aggregated U.S. energy transportation network model with uncertain fuel prices.

In summary, the research objectives are to:

• Model the uncertain fuel prices as discrete scenarios and build a stochastic programming

model for the bulk energy transportation system;

• Implement the model and construct case studies using historical data;

• Employ methodologies including aggregation and decomposition to solve the large-scale

optimization optimization problem;

• Judge the value of the stochastic model by comparing the stochastic solution to both

actual flows and the result from the deterministic model;

• State the lessons indicated by the stochastic model and its use in simulation of energy

movements;

• Evaluate and comment on the accuracy and stability of the model using disaggregation

and distribution perturbation.

• Apply a general scenario reduction algorithm and other methods that use the model

features to find approximated solutions to the problem and compare the accuracy and

efficiency of the alternatives.
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• Propose and demonstrate a heuristic scenario reduction method that makes use of the

problem specifications and provides tighter bounds on the discrepancy of the solution to

the stochastic programming model than the general scenario reduction method.

1.3 Thesis organization

Chapter 2 reviews the relevant literature about integrated energy systems, stochastic pro-

gramming in energy systems and computational issues. The formulation of the stochastic

version of the energy transportation model is presented in Chapter 3 and a small numerical

example illustrates the modeling methodology and some effects of fuel price uncertainty on

the optimal decisions. Chapter 4 provides a detailed description of the model structure, data

collection and the complete procedure for obtaining the solution of the optimization problem.

Results of both the stochastic and deterministic models when tested with historical data for

the years 2002 and 2006 are presented and compared in Chapter 5. Chapters 3–5 have been

extracted from [71]. In Chapter 6 we employ three scenario reduction heuristics to increase

computational efficiency [70]. Two heuristic scenario reduction methods with broader appli-

cation are proposed and demonstrated in Chapter 7. Concluding remarks and directions for

future work follow in Chapter 8.
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CHAPTER 2 LITERATURE REVIEW

2.1 The national energy system

Due to the limited data availability and the complex interaction between subsystems, most

energy models built in the literature are narrowed into contract/utility/region level and fo-

cus on one aspect of the whole system. Petroleum products, electric power, fuel supply and

transmission systems are therefore investigated separately despite being highly interconnected.

However, since 1974, the Federal Energy Administration (FEA) and its predecessor, the Energy

Information Administration (EIA), have developed a series of three computer-based, medium

term energy modeling systems to analyze domestic energy-economy markets and the relation-

ship among electric energy and all kinds of fuels.

The Project Independence Evaluation System [33] was the first of the three systems and

was employed by the FEA prior to 1982. It was initiated in 1974 to provide a framework for

the developing of national energy policy through quantitative analysis and projections of the

energy system. PIES considered several objectives including fuel price sensitivity, fuel competi-

tion (the possibility of the substitution of one energy source for another), technology restriction

or improvement, resource limitations, economic impact, regional variations and other external

effects on the energy system. Given the large volume of information and highly interdependent

nature, a modular system was employed to permit the integration of subsystems, expansion

of major components and the introduction of new elements. Figure 2.1 depicts the framework

of PIES where the supply, demand, and equilibrium balancing components are combined with

models of the economy, assessments of non-energy resource availability, and report writers

that evaluate energy solutions in terms of the environmental, economic or resource impacts.

PIES successfully analyzed the U.S. national energy system with an organization of engineer-
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ing, econometric, and optimization models and improved the decision-making process for the

complicated large-scale, time dependent system.

Figure 2.1 PIES structure [33]

In 1982, PIES was updated to the Intermediate Future Forecasting System (IFFS) which

was used by EIA through 1993 [48]. While keeping the major objectives the same as the

PIES, IFFS made a significant modification to the structure of model design, as shown in

Figure 2.2. PIES built sub-models according to functions such as supply, demand and other

constraints, keeping corresponding information about all the fuels in the same block. However,

with the period of comprehensive energy legislation ending in the late 1970s, energy issues

became more fuel specific, which motivated a model structured by fuels rather than functions.

A simple integrating routine coordinates across the fuels and steps from submodel to submodel

in order to capture the interaction among fuels. The new structure decomposes the model into

manageable units which adopt diverse methodologies and are developed by individual groups

with detailed knowledge of certain fuels. In contrast to the PIES in which the person responsible

for the integrating methodology becomes unreasonably overburdened by the developmental

runs needed to test changes in submodels, IFFS is partitioned by fuel to avoid the complex

task of integration and to balance the workload among the staff in charge of submodels.
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Figure 2.2 IFFS calculation flows (page 408 in [48])

In 1993, the IFFS was replaced by the National Energy Modeling System (NEMS) [23],

which again had a new system structure. As depicted in Figure 2.3, it takes advantages

from both PIES and IFFS. There are two levels of subsystems. The first level is composed

by function components of Supply, Conversion and Demand. Within the function blocks of

Supply and Conversion, submodels are built for individual fuels, while Demand is partitioned

according to end-users. Associated with advanced modeling and optimization techniques and

the latest computing machines, the NEMS combines and processes more energy information

than its predecessors and therefore is more capable with projections. In addition to the baseline

forecast published in the Annual Energy Outlook, NEMS generates one-time analytical reports

and papers to analyze the effects of environmental impacts, existing government regulations

and alternative energy policies. The system is used to test different assumptions about energy
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markets, as well as to evaluate the potential impacts of new and advanced energy production,

conversion and consumption technologies. It has been used for special analysis at the request

of the White House, U.S. Congress, other offices of the Department of Energy who specify

the scenarios and assumptions, which means that the analysis produced by NEMS has an

important effect on how the U.S. government regulates the energy markets. However, it is not

open-source and not available for researchers and utilities to plan with.

Figure 2.3 NEMS structure (page 10 in [23])

The Argonne National Laboratory developed a market-based simulation software program

titled the Energy and Power Evaluation Program (ENPEP-BALANCE) [2]. Based on the

input of energy system structure, energy production, consumption and prices, projected energy

demand growth, and any technical and policy constraints, the nonlinear equilibrium model

matches the demand for energy with available resources and technologies and determines the

response of the energy system to changes in energy prices and demand levels (as shown in

Figure 2.4). ENPEP-BALANCE’s powerful graphical user interface makes it easy to build

networks of regional, national, or multinational scope. It is free to anyone and is in use in

over 80 countries. The model employs a market share algorithm to estimate the penetration of

supply alternatives. The market share of a specific commodity is sensitive to the commodity’s

price relative to the price of alternative commodities. User-defined constraints (e.g., capacity

limits), government policies (taxes, subsidies, priority for domestic resource over imported
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resource, etc.), consumer preferences, and the ability of markets to respond to price signals

over time (i.e., due to lag times in capital stock turnover) also affect the market share of a

commodity. It is reported [2] that the ENPEP-BALANCE approach simulates more accurately

the complex market behavior of multiple decision makers that may not be captured by other

optimization techniques that assume a single decision maker. Besides energy flows, the model’s

output includes environmental residuals such as greenhouse gases, waste generation, water

pollution, and land use. The software is used extensively to conduct greenhouse gas mitigation

analyses, energy policy studies, and natural gas market analyses.

Figure 2.4 The Energy and Power Evaluation Program [2]

Quelhas et al. [55] developed a generalized network flow model for the U.S. electric en-

ergy system to explore economic efficiency of the energy flows from fuel suppliers to electric

load centers. Within this decision model, fuel production, transportation, storage, electricity

generation and transmission are represented by nodes and arcs included in the generalized

network which is a three-level system: Coal, natural gas and electricity are partitioned into

corresponding levels and connected by energy movements among different levels. All the data

in this model are derived from various public available sources, such as the websites of the

Energy Information Administration and the Canadian National Energy Board. The model

was validated by comparing its output to the actual data published by EIA for 2002 [54].

With the objective of cost minimization at the national level, the model is constrained by elec-

tricity generation/demand, fuel supply/demand and transmission capacities. It can be solved
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efficiently by network optimization codes and is expected to enable both public and private

decision makers having limited available data and other resources to better understand the

complex dynamics of interdependencies of primary fuels and electricity networks and carry out

comprehensive analysis of a wide range of issues related to the energy sector.

2.2 Stochastic programming

Whereas deterministic optimization problems are formulated with known parameters, real

world problems almost invariably include some unknown parameters. Randomness in problem

data poses a serious challenge for solving many linear programming problems, through which

the solutions obtained are optimal for the parameter estimates but may not be optimal for

the situation that actually occurs. Stochastic programming (SP) is a framework for modeling

optimization problems that involve uncertainty. This field is currently developing rapidly

with contributions from many disciplines including operations research, mathematics, and

probability. Conversely, it is being applied in a wide variety of subjects ranging from agriculture

to financial planning and from industrial engineering to computer networks.

The fundamental idea behind stochastic programming is the concept of recourse, which

was introduced by Dantzig [18] and Beale [3] independently. Recourse is the ability to take

corrective action after a random event has taken place. The most widely applied and studied

stochastic programming with recourse models are two-stage linear programs. Here the decision

maker takes some action in the first stage, after which a random event occurs, affecting the

outcome of the first-stage decision. A recourse decision can then be made in the second stage

that compensates for any ill effects that might have been experienced as a result of the first-

stage decision. The optimal policy from such a model is a single first-stage decision and a

collection of recourse decisions defining which second-stage action should be taken in response

to each random outcome. One natural generalization of the two-stage model is to extend it to

many stages, each of which consists of a collection of recourse decisions corresponding to the

set of possible realizations of the uncertain parameters up to that stage. Similarly to the single

first-stage policy, the nonanticipativity requires that two realizations with identical values up
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to a certain stage must have identical decisions up to that stage. Mulvey and Vladimirou [45]

specified stochastic programming to networks by dividing nodes and arcs into separate sets

corresponding to the stage to which they belong. They also developed a scenario aggregation

algorithm to maintain the network structure when decomposing a large-scale problem into

small sub-problems.

An alternative type of stochastic programming approach is so-called chance-constrained

programming, which was first introduced by Charnes and Cooper [15]. It does not require that

decisions be feasible for every outcome of the random parameters. It seeks a decision which

ensures that a set of constraints will hold with a certain probability. An application might be

a delivery service that experiences random demands, and wishes to find the cheapest way to

deliver its packages on time with a high probability.

While stochastic programming is usually characterized by a probability distribution on the

parameters, robust optimization, which is a further development of chance-constrained SP, can

tackle the problems where the parameters are only known within certain bounds. The goal is to

find a solution that is feasible and acceptably close to optimal for all such data. Research with

main contributions to the foundation of robust optimization includes Ben-Tal and Nemirovski

[5] and Kouvelis and Yu [40]. Bertsimas and Sim [7] presented a robust optimization approach

which set up a parameter to control the level of robustness against conservatism. This method

provides a solution satisfying a high proportion (which depends on the parameter set) of the

constraints even for the worst situation.

2.3 Scenarios in stochastic programming

A crucial step during the implementation of SP models is modeling the random parameters

to well reflect the available knowledge on the randomness at hand. The uncertainties can be

expressed in terms of multivariate continuous distributions or a discrete distribution with as

many outcomes as necessary. In the formulation of a SP with discretely distributed parameters,

the discrete scenarios are usually organized in the form of a scenario tree with nodes at levels

which correspond to stages.
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In the literature, there are generally three kinds of methods to generate a scenario tree.

The first method is from data paths to the tree. Sufficient data paths are sampled from spec-

ified distributions or obtained from past observations. Mulvey and Vladimirou [43] developed

a global scenario system which can simulate arbitrarily many sample paths using a calibrated

model. The authors of [19], [36] and [62] use multivariate autoregression models to generate

data paths in finance, hydroelectric power planning, and water resource applications, respec-

tively. The next step is to build a scenario tree of a prescribed structure, which is determined

by the horizon and stages of the model. This could be done by ad hoc crude methods, by

cutting and pasting the data paths in a more or less intuitive way. Another option is the clus-

ter analysis mentioned in [8] and [12]. It is also possible to generate the best approximating

scenario tree of a given structure via a stochastic approximation technique suggested in [52].

The second choice of generating a scenario tree is directly generation of arcs sequentially.

In [17], a Markov structure of data is exploited for conditional generation of scenarios in a

way which takes into account the already created structure of the tree. A recent technique

is sequential importance sampling by Dempster and Thompson [20]. In this algorithm, the

tree is updated at every major iteration and addition sample paths are selected or previous

realizations deleted, depending on the nodal importance estimates at the current iteration.

The tree generated here is dynamic. The efficiency of the method depends on the adopted

sampling rule.

The third algorithm, which was introduced in [34], is more flexible than the previous two in

the sense that it can match more complex distributions with a limited number of constraints.

One is free to specify any statistical properties he finds relevant. The method minimizes

some measure of distance between the statistical properties of the generated outcomes and the

specified values by solving a nonlinear program. While the method provides flexibility, the set

of properties that are relevant is problem dependent and the choice of this set will affect the

accuracy of model. Finally, there are also problem-oriented scenario trees. In [44] and [39],

the trees are based solely on past observations. In other financial applications, such as [37]

and [38], the scenario-based estimates of future asset prices are designed to not allow arbitrage
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opportunities.

In applications, the size of a scenario tree may grow extremely fast as the number of stages

increases, producing an extraordinarily large SP problem which is difficult to solve due to

memory limitations. Fortunately, we can find various effective methodologies in the literature

to handle such large-scale linear programs. Benders decomposition [6] and other approaches

derived from it are one series of schemes that decompose a large size problem into small

subproblems. When Benders decomposition is applied to two-stage stochastic linear problems,

the first stage is formulated as the master problem providing lower bounds, and a subproblem

is formed for each scenario. All the subproblems together generate upper bounds and cuts for

the master problem. The lower bound and upper bound eventually converge to the optimal

solution. Benders decomposition keeps both the master and sub problems solvable. In effect,

it substitutes computation time for memory requirements.

The drawback of decomposition is that it is time consuming to solve all the subproblems

iteration by iteration given the large number of scenarios. Hence, sampling techniques are

employed to reduce the number of sub problems. Lavenberg and Welch [41] discuss the ef-

ficiency of control variates in Monte Carlo sampling. Dantzig and Glynn [16] and Infanger

[35] introduced importance sampling which is an improvement of Monte Carlo sampling. The

approach embeds sampling in the decomposition algorithms where sampling only applies to

the sub-problems so that there is no need to reformulate the whole problem according to each

sample’s results.

Compared to the repeating sampling procedure which might requires implementation of

parallel computation, the scenario reduction method developed by Dupac̆ová et al. [21] does a

one-time reduction of the data paths or the scenario tree. Two heuristic algorithms are devised

to select a subset of scenarios that has the minimum measure of distance to the original set of

the scenarios. However, it is uncertain how accurately the selected scenarios would represent

the original statistical specifications and how well the resulting solution approximates the true

optimum. The general scenario reduction approach has come to be the standard built into

the General Algebraic Modeling System (GAMS), which is a high-level modeling system for
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mathematical programming problems. There are also heuristics for certain types of problems.

Carino et al. [13] choose scenarios according to desired mean and standard deviation. Beltratti

et al. [4] separate the scenario tree into extreme scenarios and the most likely ones and a certain

fraction of scenarios from each cluster are retained to represent the stochastic situation.

2.4 Stochastic programming models in energy

Stochastic programming models are widely used in the area of optimal allocation of energy

and its related resources, where demand and prices are always unpredictable [68]. Those

models in power systems planning are usually categorized according to the planning horizon.

Long term planning models deal with a 15-20 year time horizon and consider large investments

such as building thermal units and constructing hydro reservoirs and turbines. This kind of

model helps us find the optimal investment to meet the uncertain future demand. Regularly,

several possible future load duration curves are put forward and a straightforward recourse

model is developed to address the recourse solutions for different scenarios. Murphy et al.

[47] carried out a deterministic investment analysis using a new load duration curve carefully

aggregated from scenario curves and obtained the same solution as if the recourse problem

is solved. Sherali et al. [64, 65] emphasized peak load pricing and discussed Murphy’s model

in greater detail. Gardner and Rogers [30] investigated a multi-stage problem where load

duration curves are revealed over time and investments are made stage by stage. While all

the demand must be satisfied in traditional monopoly-based production planning, Qiu and

Girgis [53] look at the problem from a different perspective by allowing and pricing outages,

which takes into account that something even worse than the worst scenario modeled could

occur with the consequence of shortage. Roh et al. [57] presents a stochastic program for

generation and transmission expansion planning model in a competitive electricity market.

Scenarios for random outages of generating units and transmission lines as well as long-term

load forecasting are generated by Monte Carlo simulation. The scenario reduction technique

of Dupac̆ová et al. [21] is introduced for reducing the computational burden of a large number

of planning scenarios.
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Medium-term power planning has a 1-3 year horizon. Many applications deal with hydro

reservoir management, where the true cost and risk brought by the uncertain aspects of us-

ing the water are underestimated by deterministic solutions. The performance of stochastic

optimization models is proved to be significant. Pereira and Pinto [51] applied a multi-stage

stochastic dydamic programming methodology to a system of 39 hydroelectric plants in or-

der to solve for the optimal generation plan, which is composed of 10 monthly decisions. In

this model the future inflows sequences, of which it is impossible to get a perfect forcast, are

the stochastic parameters and the objective is to minimize the expected-cost-to-go functions

which are piecewise linear. Butler and Dyer [11] used a linear two-stage stochastic program-

ming model to aid a utility company in making optimal natural gas purchase decisions under

uncertain future gas prices and demands. Within the one year horizon considered, in order

to reduce the scale of problem, the later periods are aggregated and a daily-weekly-monthly

model was adopted. Ryan and Wang [61] reviewed stochastic models in energy transportation

and storage for dispatchable power generation. Fuel and electricity prices and future energy

demands are the most common uncertainties that need to be considered.

All of the above models were developed for regulated markets. The transition of electricity

markets from the old regulated regime to the deregulated system motivated the development

of hybrid stochastic models where there is both a demand constraint and a wholesale market,

where the producer can choose to serve the local load by his own production capacity or by

buying capacity. Some stochastic programming models serve the needs of utility planners and

policy makers in that they can generate scenarios for market prices of electricity. Important

papers include [29], [10] and [32].

As the electricity markets are developing into regional commodity markets, the use of stan-

dardized financial contracts such as forward contracts increases. The contract price represents

the current market value of future delivery of the electricity. Hence, valuation of future pro-

duction is needed in stochastic programming models in energy. These models are based on

describing the uncertainty in the form of scenarios of the spot price of the commodity. Although

basing the scenarios on forecasts of spot prices will not give a valuation that is consistent with
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the market, the stochastic programming models can value the decision flexibility using a price

of risk that is consistent with the market.

Short term planning typically deals with problems having horizons of one week or shorter,

such as unit commitment (UC) and economic dispatch. Wang et al. [69] built a SP model

to solve a single day security-constrained UC problem with uncertain wind power generation.

The scenario reduction technique is employed to reduce the large number of sampled scenarios.

The strategy of rolling planning with scenario trees is adopted in [66] to solve a similar UC

problem with a time horizon of 36 hours. Scenario reduction is also applied. Energy bidding

is viewed as a short term optimization problem in which the market participant offers to

buy or sell capacity to the market in the form of price-quantity pairs for given time intervals.

Determining optimal bids to send to the market operator becomes a nontrivial task that can be

supported by stochastic programming models. Nowak and Römisch [50] studied this problem

and presented an integrated stochastic unit commitment and bidding model. Neame et al.

[49] and Anderson and Philpott [1] also developed stochastic models to explore optimal energy

bidding prices.

Operations scheduling in deregulated markets is divided into two categories. In the first set

of problems, generation utilities are not large enough to influence electricity prices by changing

the amount of generation capacity offered to the market. Scott and Read [63] investigated the

other class of models in which the operators do have market power on energy price. A major

limitation in these analyses is that buying and selling of contracts is in reality determined

simultaneously with production.

Financial instruments such as forward contracts are used to reduce risk in energy markets.

However, because fixing income in the future does not automatically mean reduced risks,

researchers made great efforts on stochastic models that manage the risk of energy trading.

Mo et al. [42] and Fleten et al. [28] suggest that production scheduling and contract risk

management should be integrated in order to maximize expected profit at some acceptable

level of risk. However, other researchers claim that the benefits of a decoupled set of models

will probably outweigh the small theoretical gain from integrating production planning and
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trading. All in all, the deregulated markets have not found their final forms and there are

many more topics that can be investigated with the tool of stochastic programming.

2.5 The gap in the literature

In this chapter, we reviewed the existing national energy systems, stochastic programmming

and its applications in energy systems. There is no doubt that a range of methodologies are

involved in the complex national energy models constructed by EIA and others to address

the uncertainties in the huge system. However, details of these models are not revealed. The

modeling of uncertainty in medium-term national energy systems is still largely missing in

the literature. In this report, we will include uncertain fuel prices in Quelhas’s model [55],

use the stochastic programming method to model the uncertainty and better simulate the

energy flows in national scope. In addition to the complexity of subsystems which is the main

reason for lack of national wide energy models in the literature, the tremendous computation

task encountered in the large-scale optimization problem also matters. The size of a model

usually grows dramatically when uncertainty is considered. Therefore, we will also address the

computational efficiency issue that is inherent with the large-scale stochastic model.
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CHAPTER 3 A STOCHASTIC PROGRAM FOR FUEL COST

UNCERTAINTY

3.1 Deterministic model and its notations

Our model of the U.S. national electric energy system is aggregated by regions based on the

high-level topology of the electrical interconnections and fuel transportation infrastructure. It

is an adequate simplification of the physical and institutional complexity of the electric power

industry given that data are generally available at this level [56]. The whole system is modeled

as a generalized minimum cost flow network. The nodes represent entities such as coal mines,

natural gas wells, natural gas storage facilities and electricity demand centers at different

time periods. The flows among these nodes include the transportation or storage of fuel and

the transmission or regional trade of electricity. The flow multipliers quantify transmission

or transportation losses and the efficiency of conversion from fuel to electric energy. The

mathematical formulation of this model is as equation (3.1) [55]. Table 3.1 shows notations

used in the formula.

mine
∑

(i,j;t)∈A cij(t)eij(t)

s.t.
∑

(j,k;t)∈A ejk(t)−
∑

(i,j;t)∈A rij(t)eij(t) = bj(t̃) ∀j ∈ N,∀t̃ ∈ T

lij ≤ eij(t) ≤ uij ∀(i, j; t) ∈ A

(3.1)

3.2 Stochastic model

We investigate the impacts of uncertain fuel cost. It is reasonable to formulate these

quantities as discrete random variables taking a finite number of realizations. The assumption

of discrete distributions for the uncertain elements is common in most stochastic programming
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Table 3.1 Notations in deterministic model

A Set of arcs.
N Set of nodes.
T Set of time periods.
t Index for time periods.

(i, j; t) The arc from node i to node j in period t.

eij(t)
The decision variables, which represent energy in the form
of fuels or electricity flowing from node i to node j during
period t.

bj(t)
Supply (if positive) or demand (if negative) at node j during
time t.

uij Upper bound on the energy flowing from node i to node j.
lij Lower bound on the energy flowing from node i to node j.

cij(t)
Per unit cost of the energy flowing from node i to node j

during time t.

rij(t)
Flow multiplier associated with the arc from node i to j

during time t.

models. We model the cost per unit flow on a fuel acquisition arc as a random variable such

that Pr{cij(t) = ck
ij(t)} = pk

ij(t), k = 1, ...,K. Given a total of m random cost variables over

the problem horizon, we can define a scenario s ∈ S as an m-vector of values that occur jointly

with probability πs.

When applied to a generalized network flow problem, the two-stage approach requires that

all the arcs and nodes be divided into two sets [45]. The set of arcs A1, on which the flows have

to be decided before the uncertain quantities are revealed, are the first-stage arcs and the set of

arcs A2, on which decisions are made after, are included at the second-stage. In our model, if the

current period is t̂, then A1(t̂) = {(i, j; t) ∈ A, t = t̂} and A2(t̂) = {(i, j; t) ∈ A, t > t̂, t ∈ T};

Let ∆+
i = {(i, j; t) ∈ A} and ∆−

i = {(j, i; t) ∈ A}. The nodes are partitioned into sets:

N1(t̂) = {i : ∆−
i ∪∆+

i ∈ A1(t̂)} and N2(t̂) = N\N1(t̂).

The notation xij(t) = eij(t), (i, j; t) ∈ A1(t̂), and yij(t) = eij(t), (i, j; t) ∈ A2(t̂), distin-

guishes between first stage flows and second stage flows. All the scenarios are considered

jointly in the solution procedure. Because the values of the first-stage decisions must be in-

variant over all scenarios, we have zij(t) = xs
ij(t),∀s ∈ S(t),∀(i, j; t) ∈ A, t = t̂. Therefore,

the overall problem to minimize expected cost at period t̂ can be stated as the deterministic
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equivalent (3.2), where t̂ is suppressed in the notation of A1, A2, N1 and N2.

min(z,y)
∑

(i,j;t)∈A1
cij(t)zij(t) +

∑
s∈S(t̂) πs

∑
(i,j;t)∈A2

cs
ij(t)y

s
ij(t)

s.t.
∑

(i,j;t)∈∆+
i

zij(t)−
∑

(j,i;t)∈∆−
i

rji(t)zji(t) = bi(t̃) ∀i ∈ N1∑
(i,j;t)∈{∆+

i

⋂
A1} zij(t)−

∑
(j,i;t)∈{∆−

i

⋂
A1} rji(t)zji(t)+∑

(i,j;t)∈{∆+
i

⋂
A2} ys

ij(t)−
∑

(j,i;t)∈{∆−
i

⋂
A2} rji(t)ys

ji(t) = bi(t̃) ∀i ∈ N2,∀s ∈ S(t̂)

lij(t) ≤ zij(t) ≤ uij(t) ∀(i, j; t) ∈ A1

lij(t) ≤ ys
ij(t) ≤ uij(t) ∀(i, j; t) ∈ A2,∀s ∈ S(t̂)

(3.2)

Say |A1| = n1 and |A2| = n2, |N1| = m1 and |N2| = m2. The total number of different

scenarios is |S(t̂)|. Hence, the size of this deterministic equivalent formulation is m1 + |S(t̂)|m2

arcs and n1 + |S(t̂)|n2 nodes.

The solution to a two-stage stochastic program such as (3.2) is called the recourse problem

(RP) solution. To analyze how the decisions are affected by including uncertainty and using

stochastic programming (SP), we can compare the results of the stochastic model to three alter-

natives. A common approach to decision-making in an uncertain environment is to substitute

each random variable by its expected value and solve the resulting deterministic problem (3.1).

The expected value (EV) solution is the result where the first-stage variables have been fixed

at their values obtained by solving this deterministic problem and the second-stage variables

vary according to each scenario. Both RP and EV are usually compared to wait and see (WS)

solution, which is the collection of the optimal solution to each scenario. Besides EV and WS,

we use the true value (TV) solution, which is defined as a single set of optimal (x, y) given

the true values of the uncertain parameters, to match the real case study in chapters 4 and 5

where the actual costs of natural gas do not fall into any of the forecasted scenarios.

3.3 Small example and solutions

Before introducing the rolling horizon simulation, to understand possible effects of uncertain

fuel cost, we apply the two-stage approach to a two-period illustration of an integrated energy
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network with one coal-fired plant, one natural gas (NG) plant and one electricity demand

center. Through this example, we illustrate how fuel storage and diversity of fuel supply

increase when uncertainty is considered. Moreover, although RP is closer to WS than EV

is, it could differ from TV more than EV does, depending on how closely the true values

correspond to the forecast scenarios.

The network is shown in Figure 3.1, where for simplicity all flows are in equivalent units of

electricity. The fuel suppliers (coal mine and gas well) are integrated with the power generators

so that the costs associated with the arcs from the plants to the demand center include the fuel

cost, generation cost and transmission cost. Note that cs represents the cost of both acquiring

and storing natural gas. Nodes “1” and “2” represent the demand center in the first and second

periods, respectively.

Figure 3.1 A two-period small example

We consider a stochastic problem where the costs of fuels in the second period are uncertain.

There are two possible values for each random variable, which are considered independent. The

four scenarios are listed in Table 3.2.

Assume u2 < u1 < d < u1+u2, c11 = cL
12 < cL

22 < cH
12 < cH

22, and c11 < c21 < cs < cH
22. Given
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Table 3.2 Scenarios of the two-period small example

Scenario Coal Cost NG Cost Probability

s1(LL) c1
12 = cL

12 c1
22 = cL

22 π1 = p1p2

s2(HL) c2
12 = cH

12 c2
22 = cL

22 π2 = q1p2

s3(LH) c3
12 = cL

12 c3
22 = cH

22 π3 = p1q2

s4(HH) c4
12 = cH

12 c4
22 = cH

22 π4 = q1q2

Table 3.3 RP and EV solutions for the small example

RP EV
s1(LL) s2(HL) s3(LH) s4(HH) s1(LL) s2(HL) s3(LH) s4(HH)

x11 u1 u1 u1 u1 u1 u1 u1 u1

x20 u2 u2 u2 u2 d− u1 d− u1 d− u1 d− u1

x21 d− u1 d− u1 d− u1 d− u1 d− u1 d− u1 d− u1 d− u1

x2s u1 + u2 − d u1 + u2 − d u1 + u2 − d u1 + u2 − d 0 0 0 0
x12 u1 2d− u1 − 2u2 u1 u1 u1 d− u2 u1 u1

x22 2d− 2u1 − u2 u2 2d− 2u1 − u2 2d− 2u1 − u2 d− u1 u2 d− u1 d− u1

Coal 2(1− π2)u1 − 2π2u2 + 2π2d (2− π2)u1 − π2u2 + π2d

Gas 2π2u2 − 2(1− π2)u1 + 2(1− π2)d π2u2 − (2− π2)u1 + (2− π2)d

the expected cost of fuel f in period 2, c̄f2 = pfcL
f2 +qfcH

f2, f = 1, 2, where qf = 1−pf , the EV

solution (Table 3.3) is obviously to use as much coal as possible because c11 < c̄12 < c̄22 < cs.

The uncertain costs will be revealed at the beginning of the second period. An arc is

included in the first stage if the flow on that arc is decided before c12 and c22 are known. Here

A1 = {(Coal, 1), (Gas, Sto), (Sto, 1), (Sto, 2)} and A2 = {(Coal, 2),

(Gas, 2)}.

The stochastic program can be formulated as (3.3) and the complementary slackness con-

ditions are listed in (3.4).

min
x

c11x11 + c21x21 + csx2s + π1(c1
12x

1
12 + c1

22x
1
22) + π2(c2

12x
2
12 + c2

22x
2
22)

+π3(c3
12x

3
12 + c3

22x
3
22) + π4(c4

12x
4
12 + c4

22x
4
22)

subject to −x11 ≥ −u1 [v11]

−xi
12 ≥ −u1 [vi

12, i = 1, 2, 3, 4]
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−xi
20 ≥ −u2 [v20]

−xi
22 ≥ −u2 [vi

22, i = 1, 2, 3, 4]

x11 + x21 = d [w1]

x20 − x21 − x2s = 0 [w0]

xi
12 + x2s + xi

22 = d [wi
2, i = 1, 2, 3, 4]

x11, x
i
12, x

i
22, x20, x21, x2s ≥ 0, i = 1, 2, 3, 4

(3.3)

x11(c11 + v11 − w1) = 0

x20(v20 − w0) = 0

x21(c21 − w1 + w0) = 0

xi
12(πic

i
12 + vi

12 − wi
2) = 0, i = 1, 2, 3, 4

x2s(cs − w1
2 − w2

2 − w3
2 − w4

2 + w0) = 0

xi
22(πic

i
22 + vi

22 − wi
2) = 0, i = 1, 2, 3, 4

v11(u1 − x11) = 0

v20(u2 − x20) = 0

vi
12(u1 − xi

12) = 0, i = 1, 2, 3, 4

vi
22(u2 − xi

22) = 0, i = 1, 2, 3, 4

v11, v
i
12, v20, v

i
22 ≥, i = 1, 2, 3, 4

(3.4)

Considering the first stage variables, we find x11 = u1,x21 = d − u1 because c11 < c21,

regardless of the period 2 costs. But the optimal values of x20 and x2s are not clear. When

the fuel costs in the second period are high, it is beneficial to use storage as much as possible.

However, it is also possible that the NG cost will be low and storing gas becomes relatively

expensive.
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Consider the possibility of having x20 = u2 in the optimal RP solution. According to the

assumptions of fuel costs and scenarios, x1
12 = x3

12 = x4
12 = u1, x1

22 = x3
22 = x4

22 = 2d−2u1−u2,

x2
12 = 2d− u1 − 2u2 and x2

22 = u2. Therefore, wi
2 = πic

i
22 for i = 1, 3, 4 and w2

2 = π2c
2
12. From

the complementary slackness condition cs−w1
2−w2

2−w3
2−w4

2 +w0, for x20 = u2 to be optimal

it is necessary that c̄22 − cs + π2(cH
12 − cL

22) ≥ 0. It can be shown that the strict version of this

inequality is sufficient for x20 = u2 to be optimal.

Table 3.3 compares the RP and EV solutions. Taking the expectation over scenarios, RP

uses less coal and more natural gas than EV because it stores natural gas while EV does not.

In particular, it is able to exploit the low price of gas relative to coal in scenario 2. The results

from the stochastic program promote more NG storage and reduce advance commitments to

coal, indicating that the introduction of uncertain fuel costs leads to the diversification of fuel

supply. Moreover, the RP solution holds under the condition of c̄22 − cs + q1p2(cH
12 − cL

22) > 0

regardless of the exact specification of p1 and p2; therefore, within a certain range, the stochastic

solution is not sensitive to the distributions of the random parameters.

Consistent with the traditional perception, RP is closer to WS (Table 3.4) than EV is, in

that RP and WS use the same expected amount of each fuel (the only difference is storage vs.

purchase in the 2nd period). However, the comparison may be different for TV and RP. As

mentioned before, the actual costs can deviate from all of the scenarios. Here, two cases are

considered. In Case E, the actual costs are consistent with the expectation that c12 < c22 < cs.

Case H describes a very extreme situation where the cost of coal is very low and the cost of

NG is very high, such that c12 < cs < c22. Table 3.5 presents the TV solutions for both cases.

The RP solution could differ from TV in terms of the first stage variables more than EV does

when the true values are close to the expectations as in Case E. But when the costs deviate

from the expected values as in case H, the first stage decisions of RP are more similar to

those of TV because the stochastic method makes use of the information from those extreme

scenarios. The same qualitative comparisons, though less extreme, will be seen in results for

2002 and 2006 in Chapter 5.
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Table 3.4 WS solution for the small example

s1(LL) s2(HL) s3(LH) s4(HH)
x11 u1 u1 u1 u1

x20 d− u1 d− u1 u2 u2

x21 d− u1 d− u1 d− u1 d− u1

x2s 0 0 u1 + u2 − d u1 + u2 − d

x12 u1 d− u2 u1 u1

x22 d− u1 u2 2d− 2u1 − u2 2d− 2u1 − u2

Coal 2(1− r2)u1 − 2r2u2 + 2r2d

Gas 2r2u2 − 2(1− r2)u1 + 2(1− r2)d

Table 3.5 TV solutions for Case H and Case E

TVE TVH

x11 u1 u1

x20 d− u1 u2

x21 d− u1 d− u1

x2s 0 u1 + u2 − d

x12 u1 u1

x22 d− u1 2d− 2u1 − u2

Total Coal 2u1 2u1

Total NG 2(d− u1) 2(d− u1)
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3.4 The rolling procedure

While the two-stage approach is natural for two-period problems, the model introduced in

section 3.1 has a horizon of one year with 12 periods. If the decision model were to be used for

planning, we could adopt a multi-stage counterpart of the two-stage approach and formulate

the evolution of uncertain fuel costs in terms of a standard multi-stage scenario tree. Such

a formulation would allow the planning decisions in each stage to depend on realizations of

uncertain quantities as they unfolded over time according to the fixed scenario tree defined

at the outset. However, here a rolling two-stage approach is employed instead. Rather than

future planning, we use the model here for historical simulation; hence, the uncertain fuel

costs are modeled according to how the forecasts actually evolved over time. The actual prices

in a period did not coincide with any of the scenarios defined by forecasts from the previous

period, and the forecasts of future periods were revised each period. Thus, for example, the

price realized at period 3 differed from all scenarios defined in period 2, and the scenarios

defined in period 3 for period 4 also differed from those defined in period 2 for period 4. This

evolutionary description of uncertainty motivated the use of a rolling horizon simulation. To

simulate the actual decision making process with forecast updates, the stochastic program was

reformulated and solved repeatedly, each time solving for the current/first period decisions

with a collection of newly updated scenarios for the remaining periods.

When solving a problem with periods from t0 to T , we start with t̂ = t0 and obtain a solution

(z, y) from( 3.2), among which only first-stage decisions z for the current period t0 are kept and

the elements of z are removed from the set of decision variables. At the beginning of period

t0 + 1, set t̂ = t0 + 1 and the two sets of arcs are A1(t0 + 1) and A2(t0 + 1). The true values of

cij(t0+1) are revealed and S(t0+1) contains the scenarios for {cij(t), t ≥ t0+1} in line with the

new forecast. The decisions for period t0+1 are obtained by solving the renewed problem (3.2).

Consequently, the full recourse problem solution {eij(t), t ∈ T} is completed as we simulate

decision-making in all periods. In accordance to the rolling decision making procedure which

retains only the first-stage decision of each recourse problem solution, the RP solution here is

the collection of first-stage decisions {z(1), z(2), ..., z(T )}. Similarly to RP but instead of the
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complex SP formulation (3.2), the expected value (EV ) solution {x̄(1), x̄(2), ..., x̄(T )} is the

collection of first period decisions for a series of deterministic problems (3.1) with actual prices

replaced by the mean value of the forecasts. Note that the forecasted average costs are also

updated each period, thus rolling is necessary even for the deterministic formulation. A simple

three-period example in appendix A illustrates the procedures of obtaining RP, EV and TV.

Whereas we could apply the rolling procedure on a multi-stage formulation, we chose the

two-stage formulation, which is a relaxation of the latter by removal of non-anticipativity con-

straints on decisions after the first period [59]. Such constraints are not crucial in our problem

because the later period decisions are discarded and only the first period decisions for each hori-

zon are retained upon each roll forward. This kind of relaxation has been successfully adopted

in a real world energy planning problem [11] where the utility focuses on the current/first

period contract and operating decisions. Another important advantage of the two-stage ap-

proach is its ease of formulation and solution by decomposition. A multi-stage model would

require much more effort to reconstruct the tree upon each roll forward, and to decompose the

problems with special techniques. It is unclear whether the extra work is worthwhile due to

the nature of forecast revision and uncertainty resolution in the simulation.
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CHAPTER 4 IMPLEMENTATION

4.1 Model validation

In the network model of the U.S. bulk energy system, actual coal mines and natural gas

wells are aggregated regionally into 11 coal supply nodes and 14 natural gas supply nodes based

on 2002 data. See the appendix for the lists of nodes (Table B.1) and arcs (Table B.2), and

the network graphs (Figure B.1 to Figure B.4) for each subsystem and the integrated system.

Every node is characterized by its productive capacity and average minemouth/wellhead price.

For coal mines, the average heat value and average sulfur content are also included. The

17 nodes representing electric demand centers correspond to the demand regions defined by

North American Electric Reliability Corporation (NERC) among which electricity is traded

and transferred (reorganized to a set of 15 by 2006). For each demand region, energy generation

plants are aggregated to a single node if they use the same fuel type and prime mover. There are

6 different types of plants and a total of 102 generation nodes in the system. Each generation

node is assigned combined capacity and weighted average heat rate for all the power plants of

a certain type in that region. Arcs are established between fuel supply nodes and the matching

generation nodes. These arcs are characterized by transportation capacity, cost and efficiency.

Gas wells are connected to storage facilities and withdrawal capacities and the storage costs

are assigned to the corresponding arcs. While the gas can be carried over from one period to

the next, nodes denoting the same storage facility in consecutive periods are connected by an

arc with a lower bound representing the cushion gas and an upper capacity bound. Within

each demand region, power flows from the 6 power plants to the demand center. There is

also electricity transmitted among demand centers. All the power transmission paths have

their own capacity bounds, costs and loss factors. With year 2002 data, using monthly natural
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Table 4.1 Total flows comparison: 2002 actual data and the model

Result Actual Case A Case B
Coal deliveries (million tons) 976 953 1,054
NG deliveries (million Mcf) 5,398 5,125 3,615
Net electric power trade (thousand GWh) N/A 205 382

gas and electricity nodes and yearly coal nodes, there are totally 1290 nodes, 3480 arcs in

this deterministic model. Note that the model includes energy balance but not power flow

constraints. Ryan et al. [60] include the latter constraints as well as strategic generator

behavior and a market-balancing system operator with a highly simplified fuel network.

Quelhas et al. [54] verified the model (3.1) by comparing results from the model to actual

aggregated flows. As shown in Table 4.1, the first column contains actual coal and NG deliveries

in year 2002 and the other two columns contain total flows calculated from the model. In Case

A, optimized coal and NG flows are solved by fixing generation and demand to the actual data

at each electricity demand center, while Case B is solved with only demands fixed. The small

difference between Case A and the actual data validates the model of the fuel subsystems and

conversion to electric energy. Comparing Case A to Case B, the optimal flows indicate that

greater economic efficiency could be achieved if more electricity were generated from coal and

more electricity were traded among subregions.

4.2 The two stage decisions and scenario generation

The long term fuel cost graph in Figure 4.1 is taken from page 64 in 2006 EIA Annual

Energy Review [25]. Because the coal price is quite flat, it is treated as fixed. The natural gas

(NG) price is much more variable and therefore treated as an uncertain cost in the stochastic

model. Given the distinct levels of price stability, generators usually make long term coal

contracts and short term NG contracts. In our model, it is assumed that we set up a single

coal contract at the beginning of the year while NG purchases and power generation decisions

are made at the beginning of each month. Therefore, time step for the coal subsystem is one

year while it is one month for the NG and electrical subsystems. Unlike the usual rolling
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horizon methods where the length of simulation interval remains constant, the distinct time

steps for individual subsystems makes a constant simulation horizon impractical. Instead, the

length of each succesive horizon is reduced by one period. In January, the first-stage decisions

include the coal purchase of the whole year, NG purchase and electricity generation for the first

month. The uncertainties consist of all the future NG costs, which affect the current decision

through fuel storage. After January decisions are made, the second month NG price is known,

NG purchase and electricity generation for February become the first-stage decisions, leaving

rest of the decisions in the second-stage. The problem is completely solved when December’s

decisions are obtained.

Figure 4.1 Long term fossil fuel cost trends [25]

EIA provides a monthly updated Short Term Energy Outlook, which “industry participants

and energy analysts regularly adopt as a ‘best estimate’ of future energy outcomes”(page 718

in [9]). We use the 2002 data to illustrate the generation of scenarios. Figure 4.2 was released

in January 2002 with estimated NG prices for the whole year [22]. Figure 4.3, released in

January 2003, shows the actual 2002 NG prices [24]. The rectangle superimposed on the plots

shows the range of forecast prices during 2002. Note that the actual price shown in the second

graph is not contained in the rectangle, which indicates substantial inaccuracy in the price

forecast. So even though the outlook from EIA is a widely used source based on which utilities

and others conduct resource planning and modeling studies, there still exists much inaccuracy

and uncertainty.

Using EIA forecasts, uncertain NG cost is modeled as a discrete random variable. There are

3 possible values for each period and 11 periods with uncertain prices in the monthly model,
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Figure 4.2 EIA short term natural gas price outlooks, Jan. 2002 [22]

Figure 4.3 EIA short term natural gas price outlooks, Jan. 2003 [24]

assuming the price of January is known. The mean corresponds to the solid lines in figures 4.2

and 4.3. The low value is the lower confidence limit shown in the figure and high value is the

upper confidence limit. Both extreme values have the same probability:

P{ct = LCLt = ĉt − CIWt} = P{ct = UCLt = ĉt + CIWt} = pt, P{ct = ĉt} = 1− 2pt.

The variance of the random variable Var(ct) = 2pt(CIWt) depends on pt and the width of

the confidence interval. It is reasonable to set a larger value for pt for more remote periods

because we are more uncertain about the forecast. Case 1 is the base case we will investigate

in the next section. Confidence intervals have the constant width shown in figures 4.2 and 4.3.
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In order to study the effect of increasing uncertainty, cases 2, 3 and 4 are created by doubling

either pt or CIWt or both. They will be compared to Case 1 in the next section. The variance

of the cost distribution in Case 4 is 8 times that in Case 1.

• Case 1: pt = pt0 , CIWt = CIW from EIA

• Case 2: pt = 2pt0 , CIWt = CIW from EIA

• Case 3: pt = pt0 , CIWt = 2(CIW from EIA)

• Case 4: pt = 2pt0 , CIWt = 2(CIW from EIA)

Note that, whereas EIA predicts a single national average NG price, we use regional prices

in the model. In the original deterministic model, regional prices for each month are generated

by multiplying the national price by regional factors derived from the annual data [56]. We

assume that future regional prices will have the same relationships to the national average and

generate the regional forecasts by multiplying national price forecast by the same factors. Since

NG imports from Canada play a very important role in the U.S. national NG consumption, it

is necessary to take those NG prices as uncertain elements, too. To generate the forecast for

the price of natural gas imported from Canada, we first found the gap between deterministic

NG prices in Canada and in U.S.A and then added the difference to the U.S. national NG

price forecast.

4.3 Decomposition of the large-scale problem

According to Section 4.2, our 12-month problem can be solved as a sequence of 11 succes-

sively smaller two-stage stochastic problems and 1 deterministic problem, among which the

largest problem has 311 scenarios. For 2002 data, formulation (3.1) has 1290 nodes (m1 = 157,

m2 = 952) and 3480 arcs (n1 = 521, n2 = 2959). Therefore the largest problem written in (3.2)

has 157 + 952× 311 = 168, 644, 101 constraints and 521 + 2959× 311 = 524, 178, 494 variables,

which cannot be solved on a regular PC due to memory limitation.

Benders decomposition [6] and approaches derived from it are one series of schemes that

decompose a large size problem into a master problem and several subproblems. The master
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problem and the subproblems usually iteratively generate bounds that will eventually converge

to the optimal solution to the original problem. Problem (3.2) can be decomposed into one

master problem and |S(t̂)| subproblems using the L-shaped method by Van Slyke and Wets

[67]. Through the technique of decomposition, the multi-million variable/constraint problem

was solved within the time scale of several days.
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CHAPTER 5 RESULTS

5.1 Stochastic model vs. deterministic model for 2002

The model formulated in Chapter 3 and implemented as described in Chapter 4 is solved by

three different approaches which lead to three sets of solutions. The true value (TV ) solution is

obtained from solving the deterministic problem (3.1) with the actual fuel price. The expected

value (EV ) solution is also from the deterministic problem (3.1) but solved by replacing the

actual price with the mean value of its forecast over the whole year. The recourse problem

(RP) solution is obtained by solving the stochastic problem via Benders decomposition with

the rolling two-stage procedure. The total costs in the last row are the costs encountered if

the decisions are implemented in reality under the actual fuel prices.

We first compare the total flows (Table 5.1) in each solution. In the RP solution that

contains uncertainty, coal deliveries decrease and NG deliveries increase; especially, imports

from Canada are more than doubled relative to the EV solution. As a result, electricity

generated from coal-fired plants is reduced and more electricity is generated from natural gas.

The electricity trade among regions in RP is less than 90% that in TV. One explanation for

the reduction of trade is that, because decision makers could not know the price of NG would

soar, they did not buy as much electricity from the areas with cheaper fuel.

Compared to RP, the EV solution is closer to TV, the optimal solution with perfect

information. However, RP is closer to the 2002 actual data than either EV or TV is, as

shown in Table 5.1. The comparison indicates that while EV and TV rely more on coal, RP

has a similar tendency as actually occurred to use more natural gas. In the stochastic case,

more natural gas is imported from Canada, which is also closer to reality. We conjecture that

this interesting result comes from the greater realism of the stochastic model: we modeled some
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Table 5.1 TV, EV, RP solutions compared to 2002 actual data

Results Actual TV EV RP (RP -TV )/TV
Coal deliveries (m* tons) 976 1,053 1,049 937 -11.07%
Canada Natural gas deliveries (m Mcf) 886 98 207 617 528.46%
Domestic Natural gas deliveries (m Mcf) 4,785 3,732 3,701 5,337 43.01%
Total Natural gas deliveries (m Mcf) 5,398 3,830 3,908 5,954 55.47%
Electricity generation from coal (m GWh) 1,933 2,117 2,105 1,877 -11.32%
Electricity generation from NG (m GWh) 691 415 426 653 57.50%
Net trade (m GWh) N/A 381 369 324 -15.12%
Total costs (m $) N/A 36,668 37,419 42,317 15.41%
* m = million

of the uncertain factors that people making decisions faced in reality. The results indicate that

the stochastic model can be utilized as a tool to investigate and predict how the whole system

would react under real world uncertainties.

Besides total flows, it is also beneficial to look at regional flows. Figure 5.1 shows that TV,

EV and RP make different decisions on how much to buy at each natural gas supply area. The

randomization of natural gas cost not only changes the total flows but also has a significant

impact on the amount of natural gas purchased from each supply area.

Figure 5.1 Natural gas flows from supply areas, 2002

Murphy and Sen [46] showed that the optimal solution to a stochastic linear program has
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at least as many nonzero values for first-stage variables as does the optimal solution to the

deterministic problem solved for any of its scenarios. Thus, the stochastic solution tends to be

more diversified than the deterministic solution. In our problem, TV has 2687 basic variables

with nonzero values, EV has 2713 and RP has 2749. Our results agree with the Murphy and

Sen’s conclusion in two ways: (1) RP is less concentrated on coal; (2) natural gas is supplied

from sixteen regions in RP, which is four more than those in TV, as shown in Figure 5.1.

Natural gas storage levels in TV, EV and RP are compared in Figure 5.2 with the solid

line showing the forecasted price trend. When uncertainty is introduced, the system stores

more natural gas. Moreover, the storage level in RP is more consistent with the price outlook

than those in TV and EV. Figure 5.3 shows the net trade amount at each electricity demand

center. At most locations, exports or imports decline because of future price uncertainty, which

corresponds to the decrease of total power trade in the total flows comparison (Table 5.1).

Figure 5.2 Natural gas storage levels, 2002

5.2 Stability of the model

In a stochastic model, scenarios represent users’ subjective views on how the real situation

is best represented by the data. A stochastic program that provides very different first stage

decisions with respect to changes in the underlying probability measure is inconsistent and
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Figure 5.3 Electricity exports at demand centers, 2002

unstable [58]. The stability of the model in this paper is tested by studying the impact of the

degree of uncertainty on the RP solution. We increased the variance of the random variables

by changing confidence interval widths and associated probabilities. Case 1 is the benchmark

case used in previous analysis. Cases 2, 3 and 4 are as described in Section 4.2. RP1 to RP4

correspond to the solutions resulting from Cases 1 through 4, respectively.

The solutions of RP1, RP2, RP3, and RP4 in Table 5.2 are quite similar to each other

in terms of coal delivery, natural gas delivery and the total expected cost. Figure 5.2 shows

that they all have higher storage levels than TV, which is apparently an outcome of the need

to hedge against future uncertainty by storing more fuel. While converting from the forecast

confidence intervals to the discrete distributions was basically guesswork, the similarity among

recourse solutions in the four cases indicates that the stochastic solution is stable and not

sensitive to the values of pt and CIWt that specify the discrete distributions used to generate

scenarios. This is consistent with the findings in the small example of Section 3.3.

5.3 Load decomposition

In light of the results from the recourse model as well as the comparison with actual data,

it appears that the deterministic network flow model underestimates the usage of natural gas

in favor of coal. The TV solution used 29% less natural gas to generate electricity than was
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Table 5.2 2002 TV and RP solutions: Case 1 – Case 4

Results TV RP1 RP2 RP3 RP4
Coal deliveries (m tons) 1,053 937 931 934 931
Canada Natural gas deliveries (m Mcf) 98 617 609 613 709
Domestic Natural gas deliveries (m Mcf) 3,732 5,337 5,427 5,390 5,827
Total Natural gas deliveries (m Mcf) 3,830 5,954 5,789 5,857 6,536
Electricity generation from coal (m GWh) 2,117 1,877 1,868 1,872 1,822
Electricity generation from NG (m GWh) 415 653 662 658 708
Net trade (m GWh) 381 324 324 324 315
Total costs (m $) 36,668 42,317 42,565 42,463 44,582

actually used in 2002. Another possible explanation for the model’s underemphasis on natural

gas is its aggregation of electricity demand over long time periods. Most of the generating

units employed to satisfy peak demand are gas-fired, but the aggregated model might not

capture the need for using them because it ignores the daily/hourly variation in load. To test

whether some of the difference in NG consumption levels between the deterministic model and

the actual data was caused by load aggregation, the electricity load was disaggregated with

respect to time in the TV model according to a load duration curve (LDC).

The LDC arranges the demand data in decreasing order of magnitude, rather than chrono-

logically. As most of the publicly available information of load consists of hourly data, ag-

gregating the similar hours in LDC would be an appropriate way to account for the demand

variability for mid- or long-term planning problems. Because the hourly load data were only

available for regions New York (NY-ISO) and New England (ISO-NE), we decomposed the

load of every region according to the pattern of NY-ISO, where the demand of electric power

is always intensive and the peak hours are especially critical. In the deterministic model, the

744 hours in each month are sorted in decreasing order and then clustered into ten levels with

equal time interval. Figure 5.4 illustrates the procedure for NY-ISO in July 2002. The corre-

sponding generation capacity for each level of load is one tenth of the total regional capacity

in one period.

Load decomposition raised the output of natural gas-fired power plants in 14 out of the 17

regions. And the total natural gas consumption increased to 4,228 million Mcf, which is 17%
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less than the actual consumption (5,398 million Mcf) in 2002. However, we chose to retain

aggregated load because (1) hourly load data are not available for most of the regions except

NY and NE and the total increase of NG usage due to load decomposition is approximated

by employing the LDC of NY for all the regions, which tends to overstate the impact of peak

hours by neglecting regional variations in the demand pattern; and (2) with the estimated

increment of NG usage, there is still a 17% gap between the TV solution based on load

decomposition and the actual usage, while the discrepancy is smaller for the RP solution

without load decomposition, which is only 7% lower than the actual usage.

Figure 5.4 Load decomposition using 10 levels

5.4 Results for 2006 data

To test the conclusions drawn from 2002 results, we constructed a 2006 data set, following

the same procedure as described in Chapter 4. The most significant difference between the two

years’ data is that EIA issued outlooks of NG prices that were higher than the actual values

in 2006 (figures 5.5 [26] and 5.6 [27]), while for 2002 the forecasts were consistently lower than

true prices (figures 4.2 and 4.3). Table 5.3 compares TV, EV and RP for 2006. RP still
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uses more NG than TV, but they are not as distinct from each other in total consumption of

coal and natural gas as in the 2002 results because of the overestimated expense of natural

gas. Comparing the 2002 and 2006 results to Case H and Case E, respectively, in section 3.3,

reinforces the message that the discrepancy between TV and RP depends on the magnitude

and direction of forecast errors.

Figure 5.5 EIA short term natural gas price outlooks, Jan. 2006 [26]

Figure 5.6 EIA short term natural gas price outlooks, Jan. 2007 [27]

Although RP does not differ from TV much in terms of total fuel consumption, introduction

of uncertainty leads to differences between the solutions at a more detailed level. The import

of NG from Canada is 8.5% lower in the RP solution and it is more similar to 2006 actual

data than EV is. Moreover, RP encourages trading electricity because it anticipates a rising

trend of NG price. Under this circumstance, importing power is preferred over self-generation.
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Table 5.3 TV, EV, RP solutions compared to 2006 actual data

Results Actual TV EV RP
Coal deliveries (m tons) 1,027 1,082 1,082 1,082
Canada Natural gas deliveries (m Mcf) 933 1,362 1,440 1,251
Domestic Natural gas deliveries (m Mcf) 5,289 3,087 3,020 3,208
Total Natural gas deliveries (m Mcf) 6,222 4,449 4,459 4,458
Electricity generation from coal (m GWh) 1,990 2,141 2,141 2,140
Electricity generation from NG (m GWh) 813 471 471 471
Net trade (m GWh) N/A 230 236 238
Total costs (m $) N/A 61,526 63,141 63,081

Figure 5.7 shows that trading activities are increased in 8 out of the 15 electricity demand

centers. With respect to diversification, RP has 2428 nonzero basic variables while TV has

only 2418. And Figure 5.8 shows that RP purchases NG from two more regions than either TV

or EV. RP stores more natural gas than TV and EV as a result of uncertainty (Figure 5.9), and

storage is consistent with the cost trend. Finally, a similar set of 4 cases for the distributions is

also studied for 2006. Results in Table 5.4 support the conclusion from the 2002 case that the

RP solution is stable with respect to the specification of the discrete distributions of random

variables. The overestimated NG costs reduce the tendency of more NG consumption in 2006;

however, the results remain consistent with those for 2002 in diversification of fuel supply and

the impacts of uncertain NG costs on electricity trade and fuel storage.

Figure 5.7 Electricity exports at demand centers, 2006
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Figure 5.8 Natural gas flows from supply areas, 2006

Table 5.4 2006 TV and RP solutions: Case 1 – Case 4

Results TV RP1 RP2 RP3 RP4
Coal deliveries (m tons) 1,082 1,082 1,082 1,082 1,082
Canada Natural gas deliveries (m Mcf) 1,362 1,251 1,273 1,259 1,244
Domestic Natural gas deliveries (m Mcf) 3,087 3,008 3,176 3,183 3,010
Total Natural gas deliveries (m Mcf) 4,449 4,458 4,450 4,443 4,253
Electricity generation from coal (m GWh) 2,141 2,140 2,141 2,141 2,141
Electricity generation from NG (m GWh) 471 471 471 471 471
Net trade (m GWh) 230 238 237 240 240
Total costs (m $) 61,526 63,081 62,617 62,511 62,659

5.5 Summary

Our results suggest that, because the stochastic model accounts for the underlying uncertain

factors that exist when actual fuel procurement and energy generation decisions are made, the

generation mix under stochastic costs is more like the actual situation than the deterministic

case (where the differences are more pronounced in the 2002 case). Thus, the stochastic

network flow model can be adopted to forecast the actual situation that happens in reality. In

a more detailed sense, while coal flows are stable with uncertain NG costs, decisions on natural

gas flows vary considerably; in particular, imports from Canada are especially sensitive to cost

uncertainty. In addition, more natural gas is stored when the cost uncertainty is considered and
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Figure 5.9 Natural gas storage levels, 2006

power trade is highly affected by the outlooks of fuel prices. Finally, the stochastic solutions are

consistent under different discrete distributions and thus are robust to errors in the estimated

parameters of discrete distributions of the uncertain costs.



www.manaraa.com

46

CHAPTER 6 METHODS TO ENHANCE COMPUTATIONAL

EFFICIENCY

6.1 General scenario reduction

In Section 5.2, we further investigated the effects of uncertainty by varying the distributions

of the forecasts. For each distribution, RP must be re-computed. However, it takes several

days (5 days for the 2002 problem, 3 days for 2006) to find the exact RP solution via Benders

decomposition, which is obviously inconvenient for the further study. Therefore, we tried

several methods to reduce the problem size and accelerate the speed of computation. The

results presented in this chapter have appeared in our paper [70].

We first employed problem-independent algorithms. Dupac̆ová et al. [21] proposed an

approach using a probability metric to measure the distance between the original probability

distribution of the scenarios and the probability distribution of the reduced scenarios and

furthermore identify a near-optimal subset of scenarios given certain cardinality. Two heuristic

algorithms are derived from the extreme examples for |J | = 1 and |J | = |S| − 1, where J is

the set of scenarios to be deleted and |S| is the original set of scenarios. Suppose there are k

scenarios we want to delete from the original set. The backward reduction algorithm deletes

one scenario every time and redoes it for k iterations, each time in line with the condition

|J | = 1. Similarly, the forward selection algorithm selects one scenario recursively under the

condition |J | = |s|−1, where s is the current set of scenarios. Dupac̆ová et al. [21] proved that

the heuristic algorithms provide lower and upper bounds for the minimum distance and hence

an approximate solution of the exact scenario reduction problem. One of the most important

findings is that backward (forward) outperforms forward (backward) when k is less (greater)

than N − k. In most of the circumstances, scenario reduction is needed when N is very large
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Table 6.1 Monthly model: RPsr compared to RP

2002 2006
Results RP RPsr

RPsr−RP
RP RP RPsr

RPsr−RP
RP

Coal deliveries (m tons) 937 938 0.09% 1,082 1,082 0.00%
Canada Natural gas deliveries (m Mcf) 617 513 -17.00% 1,251 1,255 0.32%
Domestic Natural gas deliveries (m Mcf) 5,337 5,434 1.83% 3,208 3,202 -0.19%
Total Natural gas deliveries (m Mcf) 5,954 5,947 -0.13% 4,458 4,458 -0.01%
Electricity generation from coal (m GWh) 1,877 1,879 0.07% 2,140 2,141 0.00%
Electricity generation from NG (m GWh) 653 652 -0.20% 471 471 -0.03%
Net trade (m GWh) 324 327 1.06% 238 236 -0.80%
Total costs (m $) 42,317 42,078 -0.57% 63,081 63,120 0.06%

and a small set of scenarios are selected, when forward selection is always chosen over backward

deletion. Our study on scenario reduction algorithms therefore focus on the former method.

We applied the forward selection algorithm to the monthly model to reduce the maximum

number of scenarios from 311 to 20. When the original set of scenario is as large as 311, it takes

nearly 1 hour to select a scenario and the total computation time is around 20 hours, which

would be prolonged if we want to include more than 20 scenarios. Table 6.1 shows that the

maximum deviations in the outputs of RPsr, which is the RP solution to the 20-scenario SP

problem, are 17% for 2002 and .8% for 2006.

6.2 Temporal aggregation

Besides the general algorithm, we also think of the methods which take advantage of the

features of the model. Because the large number of scenarios is a result of multiple stages,

temporal aggregation was our first choice. Aggregating the monthly model into quarters not

only reduces the size of (1) but also reduces the maximum number of scenarios significantly,

from 311 to 33. The largest deterministic equivalent (3.2) of the quarterly model has 157 +

296× 33 = 8149 constraints and 521 + 807× 33 = 22310 variables, which is solved in less than

1 second on a 4GB memory PC.

The three sets of solutions to the quarterly models for 2002 and 2006 can be found in

tables 6.2 and 6.3. Compared with the RP solution, the quarterly RP solution displays the
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Table 6.2 Quarterly model: RP, EV, RP and 2002 actual data

Results Actual RP EV RP (RP -RP)/RP
Coal deliveries (m* tons) 976 1,072 1,071 1,018 -5.04%
Canada Natural gas deliveries (m Mcf) 886 119 119 467 292.44%
Domestic Natural gas deliveries (m Mcf) 4,785 3,719 3,719 4,544 22.18%
Total Natural gas deliveries (m Mcf) 5,671 3,839 3,839 5,011 30.53%
Electricity generation from coal (m GWh) 1,933 2,121 2,121 1,997 -5.85%
Electricity generation from NG (m GWh) 691 410 410 533 30.00%
Net trade (m GWh) NA 350 346 309 -11.71%
Total costs (m $) NA 35,694 35,996 38,405 7.60%

Table 6.3 Quarterly model: TV, EV, RP and 2006 actual data

Results Actual TV EV RP (RP -TV )/TV
Coal deliveries (m* tons) 933 1,458 1,362 1,267 -13.14%
Canada Natural gas deliveries (m Mcf) 5,289 2,876 2,989 3,088 7.39%
Domestic Natural gas deliveries (m Mcf) 6,222 4,334 4,351 4,355 0.48%
Total Natural gas deliveries (m Mcf) 5,671 3,839 3,839 5,011 30.53%
Electricity generation from coal (m GWh) 1,990 2,155 2,155 2,155 0%
Electricity generation from NG (m GWh) 813 456 456 456 0.04%
Net trade (m GWh) NA 242 253 251 3.66%
Total costs (m $) NA 61,927 62,416 62,563 1.03%

same trend as the monthly RP solution does. Although the differences between RP and RP are

muted due to aggregation, the RP solution does have lower coal deliveries and higher natural

gas purchases than RP. The net trade is lower in RP for 2002 and higher for 2006, which is

consistent with our findings in Chapter 5. The results validate that the quarterly model is

able to show similar effects of uncertain fuel costs on the optimal energy flows and meanwhile

reduces the computational load considerably.

6.3 Structural scenario reduction

One drawback of temporal aggregation is that the decision frequency is forced to decrease

from monthly to quarterly, which makes the decisions from the quarterly model less usable

to decision makers than those from the monthly model. While retaining the monthly data

and structure, we exploit the structural features of the problem and the scenarios. section 3.2
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Table 6.4 Monthly model: RP ′ compared to RP

2002 2006
Results RP RP ′ RP ′−RP

RP RP RP ′ RP ′−RP
RP

Coal deliveries (m tons) 937 937 0% 1,082 1,082 0%
Canada Natural gas deliveries (m Mcf) 617 613 -0.65% 1,251 1,251 0%
Domestic Natural gas deliveries (m Mcf) 5,337 5,341 0.07% 3,208 3,207 -0.03%
Total Natural gas deliveries (m Mcf) 5,954 5,954 0% 4,458 4,458 -0.02%
Electricity generation from coal (m GWh) 1,877 1,878 0.05% 2,140 2,141 0%
Electricity generation from NG (m GWh) 653 653 0% 471 471 -0.02%
Net trade (m GWh) 324 326 0.62% 238 238 -0.09%
Total costs (m $) 42,317 42,273 -0.1% 63,081 63,101 0.03%

explained that only first-stage decisions are kept after each two-stage problem is solved. Thus

instead of the general distance measurement in the scenario space, it is more important to

evaluate the impact of a scenario on the first-stage decisions. Considering the fuel storage

which connects two successive periods, yet without strict theoretic proof, we found that the

forecasts of nearer periods have greater impact on the first period decisions. Suggested by this

structural feature, we cut the number of scenarios by using only the most likely costs in remote

periods, as illustrated in Figure 6.1 with a 6-period problem.

For implementation, we retain the extreme cost values in the first 6 periods so that the

maximum number of scenarios is reduced to 36 = 729. The RP solution to (3.2) with reduced

scenarios is called RP ′. It is compared to RP in Table 6.4. RP ′ is quite close to RP in both

2002 and 2006 with the largest deviation of .65%. Both results are better than RPsr and it

takes only 1 hour to solve for RP ′. That is much shorter than the approximately 729 hours

that would be used by the general algorithm if 729 scenarios are selected.

Figure 6.1 Structural scenario reduction: single value for further periods
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6.4 Summary

In order to ease the computational load and accelerate calculation speed, three methods

are employed and compared. Both temporal aggregation and structural scenario reduction

accomplished considerable problem size reduction and maintained accuracy of the conclusions

drawn from the RP approximations. Without making use of the model features, the general

scenario reduction method costs greater computational efforts. In terms of calculation load,

the convergence time for Benders decomposition is problem dependent and highly correlated to

the initial point. The heuristic solutions are obtained within relatively stable computation time

because the time needed to selecting one scenario is certain once the original set of scenarios are

set, while in Benders decomposition, the number of iterations before convergence is uncertain

and highly sensitive to the initial point.

Most of the general scenario reduction/sampling methods have their focus on the measure-

ment of the distance between the selected scenario set and the original scenario set. However,

in this application, “only the first-stage decisions matter” is a crucial feature that promotes the

idea to select a scenario according to how much impact the scenario has on the first stage. The

structural scenario reduction method outperformed the general algorithm in both accuracy and

efficiency, which inspired our proposed study of algorithms in the aspect of the accuracy of

first-stage decision. In the next chapter, we propose an algorithm that is much more efficient in

selecting scenarios than FS and a heuristic method that selects a scenario basing on its impact

on the first-stage decisions. The new approaches can be utilized in large-scale applications

emphasizing the current period decisions under a multiperiod structure.
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CHAPTER 7 HEURISTIC ALGORITHMS FOR SCENARIO

REDUCTION

7.1 Restrictions of the general scenario reduction method

A general stochastic programming problem can be written as

v(P ) = min
x∈X

EP f(x, ω) =
∫
Ω

f(ω, x)P (dω), (7.1)

where ω is the set of random parameter(s) and P is the original probability measure of ω.

In parallel to formulation (3.2), EP f(x, ω) is the total expected cost
∑

s∈S(t̂) πsfs(z, ys), ω

corresponds to the uncertain costs cij(t), (i, j; t) ∈ A2, and P is the probability measure of S,

the original set of scenarios. The general scenario reduction (GSR) method uses a probability

metric df,ρ(P,Q) to bound the discrepancy between the optimal value v(P ) and v(Q), the

optimal value under the reduced probability measure Q. The probability metric is then further

bounded by the distance between Q and P . There exists a constant ρ > 0 such that [21]:

|v(P )− v(Q)| ≤ df,ρ(P,Q) ≤ g(ρ)µ̂c(P,Q). (7.2)

Here df,ρ(P,Q):= supx∈X
⋂

ρB |
∫
Ω f(ω, x)P (dω) −

∫
Ω f(ω, x)Q(dω)|, where ρB is a Borel

σ-field with radius of ρ. The probability metric df,ρ(P,Q) is the maximum distance between

the two integrals for all the functions f satisfying that x 7→ EQf(ω, x) is lower semicontinuous,

proper and convex, and g(ρ) is a nondecreasing function. The quantity µ̂c(P,Q) is the distance

between probability measures P and Q, evaluated by integrating a continuous symmetric

function c over (P,Q) in the space of (Ω,Ω). The choice of c depends on the quantitative

continuity properties of the integrand f(x, ω). According to the research of Heitsch et al. [31]

on the stability of stochastic programs, c(ωi, ωj) = ‖ωi − ωj‖ is proper for general two-stage



www.manaraa.com

52

problems, and c(ωi, ωj) = ‖ωi−ωj‖2 can be used for multi-stage problems if the cost and right-

hand-side are random and the technology matrices are deterministic. Inequality (7.2) means

that for any approximation Q of P , the largest deviation in estimating the optimal solution to a

stochastic programming problem is bounded by the product of the defined distance between P

and Q and a nondecreasing positive function; consequently, the error for the specified problem

v is no larger than that.

Although the value of ρ changes with f(ω, x) so that inequality (7.2) holds, the optimal

solution Q and the distance µ̂c(P,Q) is problem independent. Hence, the first potential pitfall

of GSR is that deviation of v(Q) from v(P ) can be very large for the problems having a big

g(ρ). Moreover, in (7.2), the first-stage variables and recourse solutions to the SP problem

are considered as a whole while it is unclear how accurate is the estimation of the first-stage

decisions, which are the most crucial part in many applications of SP.

There is also an issue with implementing GSR. While (7.2) holds for general SP problems,

our primary concern is to reduce the number of scenarios in the case where ω is discretely

distributed. According to [21], when the original probability distribution P is discrete and

carried by finitely many scenarios ωi ∈ Ω with weights pi > 0, i = 1, ..., N and
∑N

i=1 pi = 1,

the optimal reduction concept described in (7.2) suggests to calculate the optimal distance

µ̂c(P,Q) between P and Q following the formula:

µ̂c(P,Q):= min {DJ =
∑
j∈J

pj min
i/∈J

c(ωi, ωj):J ⊂ {s1, ..., sN} = S, |J | = k, N − k = n}, (7.3)

where J is the set of deleted scenarios and ωi ∈ S \ J are the retained scenarios. The distance

between a deleted scenario ωj and the retained set equals the minimum distance between ωj

and ωi, i /∈ J , measured with function c(ωi, ωj). Given the cardinality of J , the goal is to

delete the k scenarios whose distances with the retained set sum to the minimum, as described

in (7.3). The retained set of scenarios is Q with ωi, i /∈ J and qi = pi +
∑

j∈Ji
pj where

Ji: = {j ∈ J : i = i(j)} and i(j) ∈ arg mini/∈J c(ωi, ωj) for each j ∈ J . The coefficients qi

obtained in this way are called the optimal weights.

There are
(N

k

)
ways to choose k scenarios from a set of N . A scenario reduction heuristic is
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usually needed when N is very large, in which case it is hopeless to solve the special combina-

torial optimization problem (7.3) by enumerating the feasible solution set. However, Dupac̆ová

et al. [21] developed the two heuristic algorithms of Forward Selection (FS) and Backward Re-

duction (BR), which are based on the extreme cases k = N−1 and k = 1, respectively. FS/BR

selects/deletes scenarios recursively and the computation load increases with the number of

original scenarios. The most time consuming step is the calculation of c(ωi, ωj). We present

the iterative algorithms in Tables 7.1 and 7.2 and measure the computational efforts in terms

of the number of times that c(ωi, ωj) is calculated. In FS, the first scenario is selected such that

the sum of its distances to the unselected scenarios is minimized. Then in each iteration, a new

scenario is selected such that by adding this scenario to the selected set, the reduction of the

distance between the selected scenarios and the deleted scenarios is maximized. This is done by

putting each unselected scenario into Q tentatively, recording the new distance between P and

Q and choosing the scenario resulting in the smallest new distance. The algorithm terminates

when n scenarios are selected. If t is the time needed to calculate c(ωi, ωj) for one pair (ωi, ωj),

when the number of scenarios in N is very large, it takes about N2t time to select one scenario.

For the problem studied in the previous chapters, N could be as large as 311 = 177, 147, so

the computation loads for FS are huge. In BR, the first scenario is deleted such that it has the

minimum distance to the remaining scenarios, which means it can be well represented even if

deleted. In each iteration, the distribution of the undeleted scenarios is updated by adding

the probability of the last deleted scenario to that of its closest undeleted scenario; after the

redistribution, another scenario is deleted according to the same criteria by which the first

one is deleted. It takes about 0.5N2t to delete one scenario if N is sufficiently large. Even

though FS and BR are able to provide approximations for the intractable problem (7.3), they

are not very efficient when N is large, which is usually the case because otherwise reduction

of scenarios would not be necessary.

GSR is an optimal scenario reduction method based on stability analysis of the probability

metrics, with two heuristics, FS and BR. Theoretically, the reduction of scenarios is problem

independent and it could lead to a bad approximation of the exact solution, particularly a
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Table 7.1 Forward selection algorithm

Step 1. Set i = 1, ui = arg minu∈S{
∑

j 6=u pjc(ωj , ωu)};
mj = u1,∀j ∈ S \ {u1}.

Step 2. i = i + 1, ui = arg minu∈S\{u1,...,ui−1}{
∑

j /∈S\{u1,...,ui−1,u} pj minl∈{u1,...,ui−1,u} c(ωj , ωl)};
if c(ωj , ωui) < dj , mj = ui, dj = c(ωj , ωui), for each j ∈ S \ {u1, ..., ui}.

Step 3. if i < n, go to Step 2;
otherwise, calculate the optimal weights qui =

∑
j:mj=ui

pj , i = 1, 2, ..., n.
Complexity: N(N − 1) + ... + (N − (n− 1)))(N − n) = O(nN2), if N � n

Table 7.2 Backward reduction algorithm

Step 1. Set j = 1, uj = arg minu∈S{pu mini∈S\{u} c(ωi, ωu)};
muj = arg mini∈S\{uj}{c(ωi, ωuj )}, pmuj

= pmuj
+ puj .

Step 2. j = j + 1, uj = arg minu∈S\{u1,...,uj−1}{pu mini∈S\{u1,...,uj−1,u} c(ωi, ωu)};
muj = arg mini∈S\{uj}{c(ωi, ωuj )}, pmuj

= pmuj
+ puj .

Step 3. if j < k, go to Step 2;
otherwise, calculate the optimal weights qui =

∑
j:mj=ui

pj , i = 1, 2, ..., n.
Complexity: 0.5[N(N − 1) + ... + ((N − (N − (k + 1)))(N − (N − k))] = O(0.5kN2), if N � k

bad first-stage decision. Practically, the heuristic algorithms could be inefficient given a large

number of scenarios. In Section 7.2, we develop a heuristic method based on FS in order

to lighten the computational burden. In Section 7.3, we address how to better estimate the

first-stage solution and propose a new heuristic, which clusters the scenarios according to their

individual first-stage solutions and then conducts a selection procedure within each cluster.

The proposed algorithms are tested and compared to FS in Section 7.4 on a three-period

problem, in Section 7.5 on a regional realization of model (3.2), and in Section 7.6 on the case

studies of Chapter 5.

7.2 The accelerated forward selection algorithm

In FS, the scenarios are selected one by one. In each iteration, a scenario is selected and

the distance between J and S \ J is reduced in two ways. Firstly, the distance between the

newly selected scenario and S \ J declines to zero from some positive value; secondly, the

distances between unselected scenarios and S \ J may be decreased because some of them are

closer to the newly selected scenario than any of the previously selected scenarios. In FS, the
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Table 7.3 Accelerated forward selection algorithm

Step 1. Set i = 1, ui = arg minu∈S{
∑

j 6=u pjc(ωj , ωu)};
mj = u1, dj = c(ωj , ωu1), j ∈ S \ {u1}.

Step 2. i = i + 1, ui = arg maxu∈S\{u1,...,ui−1}{pudu)};
if c(ωj , ωui) < dj ,mj = ui, dj = c(ωj , ωui), for each j ∈ S \ {u1, ..., ui}.

Step 3. if i < |N − k|, go to Step 2;
otherwise, calculate the optimal weights qi.

Complexity: N(N − 1) + (N − 1) + (N − 2) + ... + (k + 1) = 1.5(N2 −N)− 0.5k2

= O(N2), if N � (N − k)

impacts of a newly selected scenario include both ways of distance reduction. When we apply

FS in Section 6.1, it is observed that the former impact is dominant. Hence, we propose an

accelerated forward selection (AFS) algorithm that takes into account only the first impact as

selection criterion. It is presented in Table 7.3. Note that it differs from FS only in step 2. The

time needed to calculate c(ωi, ωj) in AFS is 1
n of that in FS. The total computation time saved

is much greater than that because HFS bypasses many other operations such as comparisons

and summations. Table 7.4 compares HFS to FS by applying it to the 2002 case of (3.2). The

scenarios are arranged in certain order and hence identified by the sequence numbers. AFS

selected an identical set of scenarios for the largest original set. The maximum discrepancy is

two out of twenty scenarios and that happened for the smallest original set.

The reason why the result from AFS is surprisingly consistent with that from FS in this

problem is that the scenarios in this problem are close to the average scenario and distant from

each other. As illustrated in Figure 7.1, after the center point selected, the triangle point is

selected. But including this new point in the selected set will not change the distances from

other unselected points to the selected set because the closest point for them is still the center.

Accordingly, the first factor of distance reduction is dominant, as observed. Neverthless, the

probability distribution of the scenarios can be quite different from this setting. For example,

suppose the scenarios are evenly distributed within an interval and the average scenario is in the

middle as shown in Figure 7.2, where seven points are sampled from a uniform distribution.

The center point is the first selection. Both FS and AFS select the triangle point or the

diamond point as the second scenario, although the distance reduction from the second factor
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Table 7.4 Comparison of scenarios selected by AFS and FS in 2002 case.
Scenarios that differ between the two methods are italicized.

|N | = 311 |N | = 39 |N | = 37

Order of selection FS AFS FS AFS FS AFS
1 0 0 0 0 0 0
2 3 6 3 3 3 3
3 6 3 6 6 6 6
4 27 27 2 2 1 1
5 54 54 1 1 2 2
6 9 18 9 9 9 9
7 18 9 18 18 18 18
8 1 2 54 27 27 27
9 2 1 27 54 54 54
10 486 486 243 81 81 81
11 243 243 486 162 162 162
12 4374 2187 162 243 243 243
13 2187 4374 81 486 486 486
14 81 729 729 729 729 729
15 162 1458 1458 1458 1458 1458
16 729 81 13122 6561 4 4
17 1458 162 6561 13122 8 5
18 6561 13122 2187 2187 12 7
19 13122 6561 4374 4374 24 8
20 19683 19683 5 4 5 19
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is 2 and not negligible comparing to 3 from the first factor. Even in the situation where

reduction caused by the second factor is relatively large, like this case, selections made by AFS

are consistent with those by FS.

Here is an informal justification of AFS’s consistency with FS. AFS selects the scenario

that is furthest from the selected set so that reduction of the first factor is maximized. At the

same time, for those scenarios which are also far away from the selected set but near to this

scenario, a large distance reduction from the second factor can be achieved, although it is not

calculated. AFS does not select a scenario that is near to the selected set because reduction

from the first factor is small. Given that the scenario is near to the selected set, the intuition

is that its distances to other unselected scenarios are close to those of the selected set. Hence,

reduction from the second factor can not be very large. Therefore, AFS’s selection criterion is

consistent with that of FS when we consider both factors. In sections 7.4 and 7.5, we evaluate

AFS algorithm, together with the heuristic algorithm that is to be proposed in section 7.3,

under distinct settings of uncertain parameter distributions.

Figure 7.1 A three-dimension illustration of the scenarios in case study
2002
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Figure 7.2 A single-dimension illustration of the scenarios sampled from a
uniform distribution

7.3 Forward selection within clusters of transferred scenarios

In section 7.2 we devised the accelerated forward selection heuristic that provides a way to

improve the efficiency of the scenario reduction method. In this section, we propose another

heuristic algorithm where the SP problem is included in the selection procedure. The purpose

is to provide tighter bounds on the discrepancy of the first-stage decisions than the general

scenario reduction method by making use of the specific program into which the scenarios are

incorporated.

Let us go back to look at the combinatorial problem (7.3). Because pi and ωi are the only

parameters, it accounts for only one aspect of the stochastic program - the set of scenarios,

but not the objective function, decision variables, or where the uncertain quantities appear

in the formulation. Given a set of scenarios, the selection result is the same no matter what

kind of SP is utilizing the scenarios and no matter whether the uncertain parameters are cost
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Table 7.5 Forward selection within clusters of transferred scenarios
(TCFS)

Step 1. for each scenario, solve the deterministic problem and keep the key first-stage decisions
as the transferred scenario corresponding to the original scenario;

Step 2. group the original scenarios with the same transferred scenarios;
if the number of groups ng is less than or equal to n, the designated cardinality
of the set of selected scenarios, go to step 4;

Step 3. cluster the ng transferred scenarios into n clusters using k-means* method and
cluster the original scenarios into n groups accordingly;

Step 4. within each group of the original scenarios, select one scenario using FS algorithm.
Complexity: O(N2) assuming each group has N/n scenarios and N � n

* Implemented with MATLAB built-in function kmeans [MathWorks]

coefficients or right-hand-sides. The measurement of distance could be even problematic when

different quantities, such as costs and demands having different numerical magnitudes, are both

represented in the scenarios. Therefore, instead of direct selection based on distances c(ωi, ωj)

among scenarios, we propose the algorithm of selection within groups of scenarios, which are

clustered according to their impact on the first-stage decisions. A detailed description of the

method is in Table 7.5.

For a large-scale SP problem, the number of first-stage variables is usually large, too. It is

difficult to measure the impact of a scenario if all these variables are tracked. Thus, in Step

1, we suggest that only key first-stage variables be included in the transferred scenario. Key

variables are the variables which determine others. For example, fuel purchase at a power

plant decides the amount of electricity generated by the plant, therefore, the former variable,

determining the latter one, is a key decison that should be included. Problem 7.4 is a numeric

realization of the two-period small example in Section 3.3. Because the first period coal price

c11 = 4 is less than natural gas price c21 = 4.5, it is straight forward that x11 = 60 and

x21 = 40. The amount of storage x2s depends on the values of the uncertain future fuel prices

and demands. As it is closely related to the scenarios, this variable should be considered as

the key first-stage decision to quantify the impact of each scenario.

min
x

4x11 + 4.5x21 + 5x2s +
∑
s∈S

(cs
12x

s
12 + cs

22x
s
22)
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subject to x11 ≤ u1

x20 ≤ u2

xs
12 ≤ u1 ∀s ∈ S

xs
22 ≤ u2 ∀s ∈ S

x11 + x21 = 100

x20 − x21 − x2s = 0

xs
12 + x2s + xs

22 = ds ∀s ∈ S

x11, x
s
12, x

s
22, x20, x21, x2s ≥ 0, ∀s ∈ S

(7.4)

Grouping the scenarios before performing forward selection has two advantages. Firstly,

selecting one scenario from each of the n (or ng if kg < k) groups takes much less time

than selecting n scenarios from the original set of N scenarios. The value of n is bounded

from above by the the constraint Timeforselection(method, k) + TimeforsolveSP (k) < TL,

where TL is the maximum time that is allowed to solving for RP solution. In Chapter 6,

the SP problem with several hundred scenarios can be easily solved in less than one hour

but Timeforselection(FS, k) ≈ k hours limits the number of selected scenarios to 20. The

high efficiency of TCFS greatly increases the number of scenarios that can be included in the

reduced stochastic programming problem.

In Table 7.6, we use the choosing-two-scenarios-from-four case to illustrate why TCFS is

faster than FS. The second period demand is assumed to be certain in this case. In FS, we

first calculate the distance between every two scenarios and select scenario 4 which has the

smallest sum of distances D1. In the second iteration, each unselected scenario is put into the

selected set tentatively to calculate the updated sum of distances D2 and scenario 2 is selected.

Finally, for the two unselected scenarios 1 and 4, we find out which selected scenario they are

closer to, and decide the new probability distribution, shown in column FS. The procedure of

TCFS is simpler. According to the transferred scenarios x2s, the scenarios are divided into

two groups. Within the first group, scenario 2 is selected because it has the smallest sum of
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distances among the three scenarios. The new probability of this scenario is the sum of the

probabilities of all the scenarios in this group. Since there is only one scenario in the second

group, scenario 4 is selected without further calculation. The two methods result in different

selections but the same first-stage decision that is consistent with the solution solved with the

full set of scenarios. TCFS is more efficient than FS in that it selects scenarios from smaller

groups and bypasses the step of calculating new probabilities.

Table 7.6 The two-period small example: TCFS illustration – case 1

RP FS TCFS
s P (cs

12, c
s
22, d

s) D1 D2 Selection x2s D1 Selection
1 0.25 (3, 4.8, 100) 1.11 0.56 N/A 0 0.84 N/A
2 0.25 (4.2, 4, 100) 0.91 0.52 0.5 0 0.61 0.75
3 0.25 (4.9, 4.7, 100) 0.98 0.52 N/A 0 0.72 N/A
4 0.25 (4, 5.2, 100) 0.83 N/A 0.5 20 0 0.25

x2s 0 0 0
Cost 846.5 846.5 846.5

The second advantage of TCFS is that the scenarios with similar impact on the first-stage

decisions are put in the same cluster for selection, which avoids the situation that a scenario

is represented by a scenario close in value but distinct in impact on the first-stage decisions.

Case 2 in Table 7.7 is a good illustration. The first three scenarios all represent the trend that

in the second period, both coal and natural gas will be cheaper than using storage, while in

the last scenario, natural gas will be more expensive than storage. Similar to case 1, TCFS

selects scenarios 2 and 4 to represent the two trends and their probabilities. FS, however, relies

only on the distance of the values. It selects scenarios 1 and 4 and considers both unselected

scenarios 2 and 3 to be closer to scenario 4. The new probability of scenario 4 is so large

that the trend represented by this scenario is magnified, which results in a bad approximation

of the first-stage decision. The selected set of scenarios by TCFS is problem dependent and

produces more accurate first-stage decisions than FS.

TCFS’s advantage of making use of problem information can be even more evident when

the uncertain parameters are distinct quantities. In Table 7.8, we add the value of uncertain

demand into each scenario. Because all of the possible demands are no greater than the total
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Table 7.7 The two-period small example: TCFS illustration – case 2

RP FS TCFS
s P (cs

12, c
s
22, d

s) D1 D2 Selection x2s D1 Selection
1 0.25 (2, 4.8, 100) 1.82 0.56 0.25 0 1.31 N/A
2 0.25 (4.2, 4, 100) 1.14 0.76 N/A 0 0.83 0.75
3 0.25 (4.9, 4.7, 100) 1.23 0.76 N/A 0 0.97 N/A
4 0.25 (4, 5.2, 100) 1.07 N/A 0.75 20 0 0.25

x2s 0 20 0
Cost 831.5 836 831.5

capacity in the second period, they have no real impact on the storage decision. TCFS’s

selection remains the same as that in previous cases. Nevertheless, the values of demand

dominate those of prices in calculation of distances. Hence, FS’s selection again departs from

the trends of the original scenarios. Case 4 in Table 7.9 is an instance where the value of

demand ds has influence on the amount of storage. For the sake of feasibility, x2s should

be 5 as long as scenario 4 is included. Here, FS does not select this special scenario and

the possibility of high demand in the future is not included in the selected scenarios. TCFS,

however, is able to recognize scenario 4 because of its divergent impact on storage and therefore

produces a more accurate first-stage decision than FS.

Table 7.8 The two-period small example: TCFS illustration – case 3

RP FS TCFS
s P (cs

12, c22, d
s) D1 D2 Selection x2s D1 Selection

1 0.25 (3, 4.8, 105) 89.2 13.1 0.25 0 63.9 N/A
2 0.25 (4.2, 4, 110) 38.6 13.3 N/A 0 32.0 0.75
3 0.25 (4.9, 4.7, 120) 88.9 31.9 N/A 0 82.4 N/A
4 0.25 (4, 5.2, 115) 38.4 N/A 0.75 20 0 0.25

x2s 0 20 0
Cost 907 911.5 907

7.4 A three-period problem with uncertain costs and demands

The flower-girl problem [14], an extension of the famous newsboy problem [59], is a multi-

period problem where the demands are random in each period and the unsold flowers can be
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Table 7.9 The two-period small example: TCFS illustration – case 4

RP FS TCFS
s P (cs

12, c22, d
s) D1 D2 Selection x2s D1 Selection

1 0.25 (3, 4.8, 105) 133.0 31.8 0.25 0 32.7 N/A
2 0.25 (4.2, 4, 110) 70.0 32.0 N/A 0 13.3 0.75
3 0.25 (4.9, 4.7, 115) 57.7 N/A 0.75 0 32.4 N/A
4 0.25 (4, 5.2, 125) 182.2 32.4 N/A 20 0 0.25

x2s 5 0 5
Cost 915 Infeasible 915

carried over to the next period to be sold at a lower price. Here we compose a three-period

problem similar to the flower-girl problem except that both the costs and demands for future

periods are random. Problem (7.5) is the formulation. The scenario reduction algorithms, FS,

AFS and TCFS, are compared on a numeric stochastic version of the problem, which is called

the three-period uncertain costs and demands (TUCD) problem in the following text.

minx0 TC = c0x0 + c̃1x1 + c̃2x2

s.t. x0 ≥ d0

x0 + x1 ≥ d0 + d̃1

x0 + x1 + x2 ≥ d0 + d̃1 + d̃2

x0, x1, x2 ≥ 0

(7.5)

The parameters c0 and d0 for the current period are deterministic. The future prices c̃1

and c̃2 and future demands d̃1 and d̃2 are random variables following distributions described

in Table 7.10. Price c̃1 is uniformly distributed between 4 and 5. Price c̃2 is the sum of a

uniformly distributed random number and an autoregressive term, involving c̃1. The demand

in each period is impacted by the price of that period. While it is impossible to solve for

the analytical optimal solution x0, we can sample a large number of scenarios from the given

distributions and then solve problem (7.6) as a good approximation. Each scenario s ∈ S is

composed of values (cs
1, d

s
1, c

s
2, d

s
2) that are sequentially sampled from the assumed distributions.

As the total number of scenarios |S| approaches infinity, the sampled scenarios approach the

exact distributions. And it is expected that the first-stage solution to (7.6) approaches to the
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exact x0.

Table 7.10 Numeric assuptions of the TUCD problem

c0 4.5
d0 10
c̃1 c̃1 = C1

c̃1 c̃1 = C2 + 0.2(c̃1 − 4.5)
d̃1 d̃1 = D1 − 2(c̃1 − 4.5)
d̃2 d̃2 = D2 − 2(c̃1 − 5)
C1 C1 ∼ uniform(4, 5)
C2 C2 ∼ uniform(4.5, 5.5)
D1 D1 ∼ uniform(15, 25)
D1 D2 ∼ uniform(18, 38)

minx0,xs
1,xs

2
c0x0 + 1

|S|
∑

s∈S (cs
1x

s
1 + cs

2x
s
2)

s.t. x0 ≥ d0

x0 + xs
1 ≥ d0 + ds

1 ∀s ∈ S

x0 + xs
1 + xs

2 ≥ d0 + ds
1 + ds

2 ∀s ∈ S

Non-anticipativity constraint: xs1
1 = xs2

1 ∀s1, s2 ∈ S, ds1
1 = ds2

1

x0, x
s
1, x

s
2 ≥ 0 ∀s ∈ S

(7.6)

In our implementation, 2500 scenarios are sampled to formulate (7.6) and solve for the

RP solution. Then we use FS, AFS and TCFS to select 50 scenarios from the original set

of 2500 scenarios. The discrete SP (7.6) is composed for each of the reduced set of scenarios

and an approximated first-stage solution is obtained. The results from the three algorithms

are compared to RP in Table 7.11. TCFS achieved the best accuracy in approximating the

first-stage decision, while the estimates from FS and AFS are both reasonably good. The low

efficiency is a obvious drawback of FS algorithm. It takes a much longer time to select the

scenarios than to solve the original formula with 2500 scenarios. Both of the proposed heuristic

algorithms outperform FS in computation time. Accelerated forward selection uses the least

total time, while TCFS is the most efficient in selection.

In section 7.2, we learned that the distribution of the scenarios affects performance of a
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scenario reduction algorithm. Another set of 2500 scenarios are sampled under the assumption

that C1, C2, D1 and D2 follow normal distributions with the same mean value and variance.

The results based on the new scenarios are presented in Table 7.12, confirming that compared

to FS, TCFS achieves the best tradeoff between speed and accuracy.

Table 7.11 The numerical example 1: RP vs. FS vs. AFS vs. TCFS

RP FS AFS TCFS
x0 54.25 52.76 51.61 53.59

Accuracy of x0 100% 97.3% 95.2% 98.8%
Cost 193.6 193.8 194.18 193.65

Error of cost 0 .2 .58 .05
Transfer Time NA NA NA 23.93s
Selection Time NA 1211.20s 0.94s 0.64s
Solution Time 183.25s 0.04s 0.04s 0.04s
Total Time 183.25s 1211.24s 12.60s 24.01s

Table 7.12 The numerical example 2: RP vs. FS vs. AFS vs. TCFS

RP FS AFS TCFS
x0 56.15 54.98 54.71 55.80

Accuracy 100% 97.9% 97.4% 99.4%
Cost 182.04 183.45 185.52 182.04

Error of cost 0 1.41 3.48 0
Transfer Time NA NA NA 24.00s
Selection Time NA 1237.90s 0.73s 0.66s
Solution Time 181.07s 0.04s 0.04s 0.04s
Total Time 181.07s 1237.94s 0.77s 24.70s

7.5 A regional realization of the multi-period energy transportation model

In this section, we create a regional model that has a similar structure to the large model

studied in Chapter 3. This model, namely the NYNE model, considers the aggregated power

demands that are supplied by gas-fired power plants in New York and New England. As shown

in Figure 7.3, GA and GB represent domestic and Canadian gas supplies, respectively. The

same type of power plants in one region are aggregated into one node: EB for combined cycle

and EG for gas steam. There is also a storage facility where natural gas can be stored for
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future usage. As a multi-period problem, consecutive periods are connected by the stored

fuel carried from one period to the next. The objective is to figure out a best fuel purchase

and power generation plan that would minimize expected total cost given discrete distribution

(scenarios) of future natural gas prices.

Figure 7.3 A regional realization: the NYNE model

The NYNE model is implemented for year 2008. We collected relevant data from January

2008 to November 2009 so that each two-stage program in the rolling procedure has the same

time horizon of 12 months. Natural gas costs and power demands in future periods are inde-

pendent random parameters, which are assumed to follow normal distributions adopted from

the EIA short-term energy outlook. In order to solve for the RP solution, at the beginning of

each period, exact NG costs and power demands for the current period are first-stage deter-

ministic parameters and 1000 scenarios are sampled for future uncertainties from the updated

forecasts, which are depicted in Figure 7.4. Domestic gas and imported gas have the same

mean value for future prices. The variance of Canadian NG prices is twice that for domestic

prices. After solving a sequence of 12 two-stage programs, we obtain the RP solution for 2008

case of the NYNE model. The EV solution is also calculated. The two sets of solutions are

compared in Figures 7.5 to 7.7. The inclusion of uncertain fuel prices and electric loads has

a great impact on the decisions regarding NG imports (Figure 7.6) and storage (Figure 7.7).

Consistent with our findings in Chapter 5, more gas is stored in order to hedge the risk asso-
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ciated with future uncertainties. Interestingly, most of the extra storage in the RP solution

comes from international purchase that links to higher degree of uncertainty in terms of the

variance of future price.

Figure 7.4 Trends of future natural gas prices: 2008-2009

To evaluate the scenario reduction algorithms FS, AFS and TCFS, each is applied to select

a subset of scenarios at the beginning of every period and an approximation of the RP solution

is obtained by solving the stochastic program composed of the selected scenarios. According to

Figures 7.8, 7.9, and 7.10, the domestic purchase of NG does not vary in any of the solutions,

while the decisions regarding fuel imports and storage are greatly impacted by selection of

scenarios. TCFS produces the solution that is closest to RP. FS and AFS are able to estimate

the trend of NG storage. But the two curves are further away from RP than the curve from

TCFS.

In Table 7.13, we compare the performances of the three algorithms in detail. Consistent

with the graphs, TCFS is the most accurate solution in terms of total absolute deviation from

RP. AFS has the highest computational efficiency but its accuracy is not plausible. Neverthless,

we can always increase the number of selected scenarios by AFS to reduce the error. FS’s low

efficiency restricts the size of the selected set and hence the accuracy of the approximation.
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Figure 7.5 The NYNE model 2008 domestic NG purchase: EV vs. RP

TCFS, as we expected, is fast and accurate.

Table 7.13 Comparison of the results from scenario reduction algorithms:
the NYNE model

RP FS AFS TCFS FS′ TCFS′

# of scenarios 1,000 50 50 25-794* 25-794* 50
Computation time (s) 1,876 3,912 97 502 17,995 577

Cost (million $) 7,527 7,322 7,425 7,433 7,332 7,433
Absolute difference

Domestic (million Mcf) 0 0 0 0 0 0
Imports (million Mcf) 0 205.11 304.69 141.06 78.31 141.06
Storage (million Mcf) 0 154.55 253.80 123.88 76.08 123.88

*Average = 340; Std = 214.

For both FS and AFS, we have a pre-determined size for the selected set of scenarios.

However, when executing TCFS, the value of n is set to be equal to ng, meaning that we

allow a representative scenario for each group that produces a distinct set of key first-stage

decisions, which are domestic purchase, import and storage in this problem. The resulting

values of n vary from 25 to several hundreds. TCFS is different from AFS and FS in that a

larger set of selected scenarios does not mean longer selection time. This is because the more
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Figure 7.6 The NYNE model 2008 NG imports: EV vs. RP

groups there are, the fewer scenarios in each group and the shorter time is needed to select a

scenario from each group. While selection time is not a tight bound in TCFS algorithm, the

value of n can still be constrained by the time needed to solve the stochastic program. Plus,

it is not clear whether the supreme accuracy of TCFS results from the idea of making use of

first-stage decisions or simply from the increased number of scenarios that are selected. In

Table 7.13, the column labeled FS′ presents the solution obtained from FS algorithm when n

is set to be the same as that in TCFS, while in column TCFS′, n is limited to 50, which is

the size in FS and AFS. Figure 7.11 depicts the change of storage trends due to change of the

size of selection. Increasing n to a higher level does increase the accuracy of FS algorithm but

the huge computational burden greatly weakened the feasibility. With limited n, TCFS yet

generates a better solution than FS and AFS, confirming the idea of improving both accuracy

and efficiency through utilization of the information provided by the problem itself.

7.6 Comparison of heuristics in case studies of 2002 and 2006

Finally, we applied FS, AFS and TCFS to the complete multi-period energy transportation

model implemented in Chapter 4. The results for the 2002 case are presented in Table 7.14. As
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Figure 7.7 The NYNE model 2008 NG storage: EV vs. RP

we discussed in Chapter 6, FS’s approximation of total fuel usage is very accurate. However,

it does not perform as well in allocating the purchase of NG to imports and domestic supplies.

AFS selects very similar subsets of scenarios to FS, as shown in Table 7.4. Hence, the ap-

proximation obtained from AFS is very close to that from FS. And AFS achieves the solution

in less than one hour, comparing to more than one day used by FS. TCFS, by taking the

fuel acquisiton arcs as the key first-stage variables, selects scenarios that have distinct impacts

on choices of NG supply locations and thus produces import amount that is much closer to

the exact solution RP. The time consumed by TCFS is a little over 3 hours, which is a great

improvement in efficiency compared to the time taken by FS.

The difference between FS and RP is reduced in the 2006 case, as shown in Table 7.15.

Still, AFS is an efficient way to get a good approximation of the FS results. And TCFS is the

best in accuracy.

7.7 Summary

In this chapter, two heuristic scenario reduction algorithms are proposed and demonstrated.

With reasoning, we showed that the accelerated forward selection method produces similar
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Table 7.14 Comparison of the results from scenario reduction algorithms:
2002 case

Results RP FS AFS TCFS
# of scenarios selected 3t 20 20 20
Coal deliveries (m tons) 937 938 938 937
Canada natural gas deliveries (m Mcf) 617 513 512 605
Domestic natural gas deliveries (m Mcf) 5,337 5,434 5,433 5,351
Total natural gas deliveries (m Mcf) 5,954 5,947 5,947 5,956
Total costs (m $) 42,317 42,078 42,078 42,401
Computation time (hour) 436 22.5 0.8 3.6

Table 7.15 Comparison of the results from scenario reduction algorithms:
2006 case

Results RP FS AFS TCFS
# of scenarios selected 3t 20 20 20
Coal deliveries (m tons) 1,082 1,082 1,082 1,082
Canada natural gas deliveries (m Mcf) 1,251 1,255 1,255 1,253
Domestic natural gas deliveries (m Mcf) 3,208 3,202 3,202 3,206
Total natural gas deliveries (m Mcf) 4,458 4,458 4,458 4,458
Total costs (m $) 63,081 63,120 63,120 63,101
Computation time (hour) 674 21.7 0.8 3.4
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Figure 7.8 The NYNE model 2008 domestic NG purchase: RP vs. FS vs.
AFS vs. TCFS

selection to the forward selection method without restiction on scenario distribution and it is

much more efficient than FS. If confronted with a large-scale SP problem with a huge number

of scenarios, one can apply AFS to select a sub set of scenarios in very short time and get a

reasonably good approximation of the exact solution. The second heuristic, TCFS, aims at the

two shortcomings of the FS algorithm: it not only reduces the computational burden, but also

improves accuracy of the first-stage decisions. By accounting for the impact of each individual

scenario on key first-stage decisions, this method divides the scenarios into smaller groups so

that the time needed for each selection is greatly reduced. The clustering of scenarios prevents

the situation that a scenario is represented by another scenario having distinct impact on the

solution. TCFS also avoids the confusing selection results by FS when multiple quantities

appear in one scenario and the scale of one quantity dominates in the distance calculation.
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Figure 7.9 The NYNE model 2008 NG imports: RP vs. FS vs. AFS vs.
TCFS

Figure 7.10 The NYNE model 2008 NG storage: RP vs. FS vs. AFS vs.
TCFS
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Figure 7.11 The NYNE model 2008 NG storage: variations of FS and
TCFS
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CHAPTER 8 CONCLUSIONS

Economic efficiency in the supply of electric energy is a decisive prerequisite for continued

economic growth. To meet the demand for electrical energy, which increases by 4 to 7% per

year in industrialized countries, considerable amounts of primary energy carriers such as coal,

petroleum and natural gas must be provided for power generation. Power plants together with

the production and transmission of fuels compose a complex network fraught with uncertainty.

Due to the data availability and the complex interaction between subsystems, most energy

models found in the literature have either a narrow geographic focus or a perspective limited to

a single aspect of the whole system. Systems for the supply and transport of fuels and electric

power therefore are investigated separately despite being highly interconnected. Especially,

the modeling of uncertainty in medium-term models of national energy systems is still largely

missing in the literature.

We used a stochastic program to model the uncertain fuel costs and better simulate the

energy flows with a national scope. We examined how the inclusion of uncertainty affects the

model’s results; in particular, in historical case studies, whether this inclusion improves the

model’s accuracy in simulation. The computational efficiency issue is inherent with implemen-

tation of large-scale stochastic model because the size of a model usually grows dramatically

when uncertainty is considered. We devised scenario reduction algorithms to address the

tremendous computation task encountered in the large-scale optimization problem.
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8.1 A large-scale stochastic program for energy flows under fuel cost un-

certainty

To explore and simulate decision making in the U.S. electric energy system under uncer-

tainty, uncertain fuel costs were included in a model of the bulk energy transportation system,

which is composed by coal, natural gas and electricity subsystems and validated with actual

data. We modeled the uncertain elements as discretely distributed random variables and used

a two-stage approach to solve the stochastic problem. A small electricity network example

illustrated the two-stage method and the difference between the flows in the stochastic model

and those in the deterministic model.

To simulate decision-making in case studies of two separate years, the two-stage approach

was applied in a rolling procedure to solve the multi-period problem, in which the fuel costs

are revealed and forecasts are updated period by period. The scenarios of the natural gas costs

were derived from a trusted source of forecasts. Due to the large number of scenarios, the

implemented case studies have multi-million variables and constraints, which makes it non-

trivial to solve the problem on a regular PC with limited memory. The optimal solution to

the largest deterministic equivalent is obtained via Benders decomposition, the convergence

time for which is problem dependent and highly correlated to the initial point. In order to

ease the computational load and accelerate calculation speed, three approximation methods

are employed and compared. Both temporal aggregation and structural scenario reduction

accomplished considerable problem size reduction and maintained accuracy of the conclusions

drawn from the RP approximations. Without making use of the model features, the general

scenario reduction method costs greater computational effort.

The model was first tested with 2002 data. Compared to the recourse problem solution,

the expected value solution that is obtained from the deterministic model with expected future

fuel costs was closer to the optimal solution with perfect information. However, the recourse

problem solution, which includes more natural gas consumption, less inter-regional electricity

trade and higher natural gas storage levels, was similar to what actually happened in year 2002.

Observations of more balanced use of fuels and procurement from additional supply areas in the
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recourse solution were consistent with theory that predicts greater diversification in solutions

to stochastic optimization models as a hedge against uncertainty. Moreover, the results from a

version of the model with load decomposition indicates that the difference between the solution

to the deterministic (true value) solution with perfect information and the actual flows should

not be attributed mainly to temporal aggregation of electric load. The solution from the

stochastic model is stable under increased uncertainty. Therefore, the guesswork of setting the

probabilities and the width of confidence intervals has a small effect on the outcome of the

stochastic solution. Then the results from 2006 data confirm the impacts of the introduction

of uncertain fuel costs on the flows of energy supply, trade and storage within the model.

8.2 Scenario reduction algorithms for computation efficiency

While the first part of the dissertation is an application of stochastic programming model

in the U.S. power system with the methodology and illustration composed into a journal pa-

per [71], the second part is a more theoretical study on computational efficiency problem in

large-scale SP models that is raised in the first part. In Chapter 6, we investigated several

methods to ease the computational load and accelerate calculation speed for the large-scale

problem. Temporal aggregation and structural scenario reduction are two strategies that mak-

ing use of the model features and both accomplished considerable problem size reduction while

maintaining accuracy of the conclusions. The general scenario reduction method obtains more

accurate approximations but costs greater computational efforts. There is apparently a trade-

off between accuracy and computation time.

In Chapter 7, we discussed the three major restrictions of the general scenario reduction

methods, based on which two heuristic algorithms are proposed. The accelerated forward se-

lection heuristic is an excellent approximation of the original forward selection method and

greatly exceeds FS in calculation efficiency. While most of the literature dealing the large scale

problems measures the performance in terms of the total expected cost/benefit, we focus on the

first-stage decisions instead. In the proposed TCFS method, the impact of a scenario on key

first-stage variables is employed as the criterion for dividing scenarios into smaller groups. The
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clustering process reduces the computational burden and the incorporation of problem infor-

mation improves the accuracy of the final approximation of the first-stage decisions. Moreover,

TCFS method’s performance is more stable than FS when the uncertain parameters involve

different scales of quantities. We applied FS, AFS and TCFS to a three-period uncertain costs

and demands problem. Both AFS and TCFS outperform FS in computation speed. TCFS

obtains the most accurate solution. The two proposed algorithms are also applied to select

scenarios for a regional (New York and New England) realization of the stochastic program

in Chapter 3. Given its high efficiency in selecting scenarios, within the same quantity of

time, more scenarios can be selected by TCFS than by FS. TCFS allows one representative

scenario for every group of scenarios that have identical key first-stage decisions. The solution

obtained with scenarios selected by TCFS is evidently closer to the exact solution than the

approximation obtained by using either FS or AFS. We have shown in Chapter 6 that for both

2002 and 2006 cases, FS is accurate in estimating the total fuel usages. In Chapter 7, AFS and

TCFS are applied to solve for approximations of the two large-scale problems. AFS reduces

computation time from 1 day to less than one hour. TCFS obtains a more accurate estimation

in terms of allocating NG usage to foreign and domestic supply areas.
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APPENDIX A ILLUSTRATION OF THE ROLLING PROCEDURE

WITH UPDATING FORECASTS

We use a three-period problem to illustrate the rolling procedure with updating forecasts.

There is a single arc (1, 1) with uncertain costs c11(t), t = 2, 3 (the subscript 11 is supressed in

the following text). Figure A.1 depicts the scenario tree constructed in the first period. The

actual value of c for the first period is known as ca(1). Each uncertain cost has two possible

values. Under the assumption of independence, they form four scenarios S(1) = {11, 12, 21, 22}

such that c11
1 (2) = c12

1 (2) = c1
1(2), c21

1 (2) = c22
1 (2) = c2

1(2), c11
1 (3) = c21

1 (3) = c1
1(3), and

c12
1 (3) = c22

1 (3) = c2
1(3). The subscript 1 refers to the scenarios that are constructed in the first

period. We solve the two-stage stochastic programming problem (A.1) and keep the first-stage

decision z(1), which is part of the RP solution. The alternative is to solve for the EV solution

x̄(1) from the deterministic problem (A.2).

min ca(1)z(1) + p1
1(2)p1

1(3)[c1
1(2)y11

1 (2) + c1
1(3)y11

1 (3)] + p1
1(2)p2

1(3)[c1
1(2)y12

1 (2) + c2
1(3)y12

1 (3)]

+p2
1(2)p1

1(3)[c2
1(2)y21

1 (2) + c(3)11y
21
1 (3)] + p2

1(2)p2
1(3)[c2

1(2)y22
1 (2) + c2

1(3)y22
1 (3)]

s.t. a(1)z(1) + a(2)y11
1 (2) + a(3)y11

1 (3) = b

a(1)z(1) + a(2)y12
1 (2) + a(3)y12

1 (3) = b

a(1)z(1) + a(2)y21
1 (2) + a(3)y21

1 (3) = b

a(1)z(1) + a(2)y22
1 (2) + a(3)y22

1 (3) = b

(A.1)

min ca(1)x̄(1) + c̄1(2)ȳ1(2) + c̄1(3)ȳ1(3)
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s.t. a(1)x̄(1) + a(2)ȳ1(2) + a(3)ȳ1(3) = b

(A.2)

The acutal value of c(2) is revealed at the beginning of the second period. Not only ca(2)

falls out side of the predictions but also the forecasts for c(3) update. The new set of scenarios

is S(2) = {1, 2}. The renewed two-stage problem (A.3) is solved and z(2) is obtained. Similarly

to the previous period, we get the EV decision x̄(2) from problem (A.4). We are able to observe

the true value of c(3), which again does not coincide with any of the predictions, in the last

period. Without any uncertainty, we solve the two deterministic problems (A.5) and (A.6),

and complete RP as {z(1), z(2), z(3)} and EV as {x̄(1), x̄(2), x̄(3)}. For a perfect foresight

benchmark, we find the optimal decision TV = {x(1), x(2), x(3)} by solving the problem (A.7).

Finally, the costs of all the solutions are evaluated as (12)–(14).

min ca(2)z(2) + p1
2(3)c1

2(3)y1
2(3) + p2

2(3)c2
2(3)y2

2(3)

s.t. a(2)z(2) + a(3)y1
2(3) = b− a(1)z(1)

a(2)z(2) + a(3)y2
2(3) = b− a(1)z(1)

(A.3)

min ca(2)x̄(2) + c̄2(3)ȳ2(3)

s.t. a(2)x̄(2) + a(3)ȳ2(3) = b− a(1)x̄(1)

(A.4)

min ca(3)z(3)

s.t. a(3)z(3) = b− a(1)z(1)− a(2)z(2)

(A.5)
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min ca(3)x̄(3)

s.t. a(3)x̄(3) = b− a(1)x̄(1)− a(2)x̄(2)

(A.6)

min ca(1)x(1) + ca(2)x(2) + ca(3)x(3)

s.t. a(1)x(1) + a(2)x(2) + a(3)x(3) = b

(A.7)

ca(1)z(1) + ca(2)z(2) + ca(3)z(3) (A.8)

ca(1)x̄(1) + ca(2)x̄(2) + ca(3)x̄(3) (A.9)

ca(1)x(1) + ca(2)x(2) + ca(3)x(3) (A.10)
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Figure A.1 Scenario tree: the first period

Figure A.2 Scenario tree: the second period

Figure A.3 Scenario tree: the third period
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APPENDIX B THE MULTIPERIOD NETWORK FLOW MODEL OF

BULK ENERGY TRANSPORTATION SYSTEM IN U.S.

B.1 List of nodes

Table B.1 lists all the nodes in the network flow model with 2002 data.

B.2 List of arcs

Table B.2 lists all the arcs in the network flow model with 2002 data.

B.3 Figures of the network
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Figure B.1 The integrated power transportation system
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Figure B.2 The coal subsystem

Figure B.3 The natural gas subsystem
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Figure B.4 The electricity subsystem
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